dc.contributor.author |
Ramis Soriano, Jaime
|
es_ES |
dc.contributor.author |
Rey Tormos, Romina María del
|
es_ES |
dc.contributor.author |
Alba Fernández, Jesús
|
es_ES |
dc.contributor.author |
Godinho, Luis
|
es_ES |
dc.contributor.author |
Carbajo, Jesús
|
es_ES |
dc.date.accessioned |
2015-10-19T08:49:33Z |
|
dc.date.available |
2015-10-19T08:49:33Z |
|
dc.date.issued |
2014 |
|
dc.identifier.issn |
0465-2746 |
|
dc.identifier.uri |
http://hdl.handle.net/10251/56184 |
|
dc.description.abstract |
[EN] In the present paper, a methodology is proposed for obtaining empirical equations describing the
sound absorption characteristics of an absorbing material obtained from natural fibers, specifically from coconut.
The method, which was previously applied to other materials, requires performing measurements of airflow
resistivity and of acoustic impedance for samples of the material under study. The equations that govern
the acoustic behavior of the material are then derived by means of a least-squares fit of the acoustic impedance
and of the propagation constant. These results can be useful since they allow the empirically obtained analytical
equations to be easily incorporated in prediction and simulation models of acoustic systems for noise control
that incorporate the studied materials. |
es_ES |
dc.description.abstract |
[ES] En este trabajo se
describe el proceso seguido para obtener ecuaciones empíricas del comportamiento acústico de un material
absorbente obtenido a partir de fibras naturales, concretamente el coco. El procedimiento, que ha sido ensayado
con éxito en otros materiales, implica la realización de medidas de impedancia y resistencia al flujo de muestras
del material bajo estudio. Las ecuaciones que gobiernan el comportamiento desde el punto de vista acústico del
material se obtienen a partir del ajuste de ecuaciones de comportamiento de la impedancia acústica y la constante
de propagación del material. Los resultados son útiles ya que, al disponer de ecuaciones analíticas obtenidas
empíricamente, facilitan la incorporación de estos materiales en predicciones mediante métodos numéricos
del comportamiento cuando son instalados formando parte de dispositivos para el control del ruido. |
es_ES |
dc.language |
Inglés |
es_ES |
dc.publisher |
CSIC |
es_ES |
dc.relation.ispartof |
Materiales de Construcción |
es_ES |
dc.rights |
Reconocimiento - No comercial (by-nc) |
es_ES |
dc.subject |
Acoustic impedance |
es_ES |
dc.subject |
Absorption coefficient |
es_ES |
dc.subject |
Natural fibers |
es_ES |
dc.subject |
Empirical models |
es_ES |
dc.subject |
Impedancia acústica |
es_ES |
dc.subject |
Coeficiente de absorción |
es_ES |
dc.subject |
Fibras naturales |
es_ES |
dc.subject |
Modelos empíricos |
es_ES |
dc.subject.classification |
FISICA APLICADA |
es_ES |
dc.title |
A model for acoustic absorbent materials derived from coconut fiber |
es_ES |
dc.title.alternative |
Un modelo para materiales absorbentes acústicos derivados de la fibra de coco |
es_ES |
dc.type |
Artículo |
es_ES |
dc.identifier.doi |
10.3989/mc.2014.00513 |
|
dc.rights.accessRights |
Abierto |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada |
es_ES |
dc.description.bibliographicCitation |
Ramis Soriano, J.; Rey Tormos, RMD.; Alba Fernández, J.; Godinho, L.; Carbajo, J. (2014). A model for acoustic absorbent materials derived from coconut fiber. Materiales de Construcción. 64(313):1-7. doi:10.3989/mc.2014.00513 |
es_ES |
dc.description.accrualMethod |
S |
es_ES |
dc.relation.publisherversion |
http://dx.doi.org/10.3989/mc.2014.00513 |
es_ES |
dc.description.upvformatpinicio |
1 |
es_ES |
dc.description.upvformatpfin |
7 |
es_ES |
dc.type.version |
info:eu-repo/semantics/publishedVersion |
es_ES |
dc.description.volume |
64 |
es_ES |
dc.description.issue |
313 |
es_ES |
dc.relation.senia |
267249 |
es_ES |
dc.description.references |
Delany, M. E., & Bazley, E. N. (1970). Acoustical properties of fibrous absorbent materials. Applied Acoustics, 3(2), 105-116. doi:10.1016/0003-682x(70)90031-9 |
es_ES |
dc.description.references |
Miki, Y. (1990). Acoustical properties of porous materials. Modifications of Delany-Bazley models. Journal of the Acoustical Society of Japan (E), 11(1), 19-24. doi:10.1250/ast.11.19 |
es_ES |
dc.description.references |
4. Miki, Y. (1990) Acoustical Properties of Porous Materials-Generalizations of empirical models. J. Acoust. Soc. Jpn. (E) 11 [1], 13–24. |
es_ES |
dc.description.references |
Dunn, I. P., & Davern, W. A. (1986). Calculation of acoustic impedance of multi-layer absorbers. Applied Acoustics, 19(5), 321-334. doi:10.1016/0003-682x(86)90044-7 |
es_ES |
dc.description.references |
Garai, M., & Pompoli, F. (2005). A simple empirical model of polyester fibre materials for acoustical applications. Applied Acoustics, 66(12), 1383-1398. doi:10.1016/j.apacoust.2005.04.008 |
es_ES |
dc.description.references |
Wang, X., Eisenbrey, J., Zeitz, M., & Sun, J. Q. (2004). Multi-stage regression analysis of acoustical properties of polyurethane foams. Journal of Sound and Vibration, 273(4-5), 1109-1117. doi:10.1016/j.jsv.2003.09.039 |
es_ES |
dc.description.references |
Shoshani, Y., & Yakubov, Y. (2000). Numerical assessment of maximal absorption coefficients for nonwoven fiberwebs. Applied Acoustics, 59(1), 77-87. doi:10.1016/s0003-682x(99)00015-8 |
es_ES |
dc.description.references |
Voronina, N. (1996). Improved empirical model of sound propagation through a fibrous material. Applied Acoustics, 48(2), 121-132. doi:10.1016/0003-682x(95)00055-e |
es_ES |
dc.description.references |
Voronina, N. (1998). An empirical model for elastic porous materials. Applied Acoustics, 55(1), 67-83. doi:10.1016/s0003-682x(97)00098-4 |
es_ES |
dc.description.references |
Voronina, N. (1999). An empirical model for rigid-frame porous materials with low porosity. Applied Acoustics, 58(3), 295-304. doi:10.1016/s0003-682x(98)00076-0 |
es_ES |
dc.description.references |
Voronina, N. ., & Horoshenkov, K. . (2003). A new empirical model for the acoustic properties of loose granular media. Applied Acoustics, 64(4), 415-432. doi:10.1016/s0003-682x(02)00105-6 |
es_ES |
dc.description.references |
Asasutjarit, C., Hirunlabh, J., Khedari, J., Charoenvai, S., Zeghmati, B., & Shin, U. C. (2007). Development of coconut coir-based lightweight cement board. Construction and Building Materials, 21(2), 277-288. doi:10.1016/j.conbuildmat.2005.08.028 |
es_ES |
dc.description.references |
Panyakaew, S., & Fotios, S. (2011). New thermal insulation boards made from coconut husk and bagasse. Energy and Buildings, 43(7), 1732-1739. doi:10.1016/j.enbuild.2011.03.015 |
es_ES |
dc.description.references |
Hosseini Fouladi, M., Nor, M. J. M., Ayub, M., & Leman, Z. A. (2010). Utilization of coir fiber in multilayer acoustic absorption panel. Applied Acoustics, 71(3), 241-249. doi:10.1016/j.apacoust.2009.09.003 |
es_ES |
dc.description.references |
Hosseini Fouladi, M., Ayub, M., & Jailani Mohd Nor, M. (2011). Analysis of coir fiber acoustical characteristics. Applied Acoustics, 72(1), 35-42. doi:10.1016/j.apacoust.2010.09.007 |
es_ES |
dc.description.references |
Nor, M. J. M., Ayub, M., Zulkifli, R., Amin, N., & Fouladi, M. H. (2010). Effect of Different Factors on the Acoustic Absorption of Coir Fiber. Journal of Applied Sciences, 10(22), 2887-2892. doi:10.3923/jas.2010.2887.2892 |
es_ES |
dc.description.references |
19. Zulkifli, R.; Nor, M.J.M.; Ismail, A.R.; Nuawi, M.Z.; Abdullah, S.; Tahir, M.F.M.; Rahman, M.N.A. (2009) Comparison of Acoustic Properties between Coir Fibre and Oil Palm Fibre. EJSR, 33 [1], 144–152. |
es_ES |
dc.description.references |
20. del Rey, R.; Alba, J.; Sanchís, V. (2007) Proposal of an empirical model for absorbent acoustical materials based in kenaf. 19th International Congress on Acoustics (Madrid) 2–7 September 2007. |
es_ES |
dc.description.references |
Ramis, J., Alba, J., Del Rey, R., Escuder, E., & Sanchís, V. J. (2010). Nuevos materiales absorbentes acústicos basados en fibra de kenaf. Materiales de Construcción, 60(299), 133-143. doi:10.3989/mc.2010.50809 |
es_ES |
dc.description.references |
Ingard, K. U., & Dear, T. A. (1985). Measurement of acoustic flow resistance. Journal of Sound and Vibration, 103(4), 567-572. doi:10.1016/s0022-460x(85)80024-9 |
es_ES |
dc.description.references |
Bies, D. A., & Hansen, C. H. (1980). Flow resistance information for acoustical design. Applied Acoustics, 13(5), 357-391. doi:10.1016/0003-682x(80)90002-x |
es_ES |