- -

A model for acoustic absorbent materials derived from coconut fiber

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

A model for acoustic absorbent materials derived from coconut fiber

Show simple item record

Files in this item

dc.contributor.author Ramis Soriano, Jaime es_ES
dc.contributor.author Rey Tormos, Romina María del es_ES
dc.contributor.author Alba Fernández, Jesús es_ES
dc.contributor.author Godinho, Luis es_ES
dc.contributor.author Carbajo, Jesús es_ES
dc.date.accessioned 2015-10-19T08:49:33Z
dc.date.available 2015-10-19T08:49:33Z
dc.date.issued 2014
dc.identifier.issn 0465-2746
dc.identifier.uri http://hdl.handle.net/10251/56184
dc.description.abstract [EN] In the present paper, a methodology is proposed for obtaining empirical equations describing the sound absorption characteristics of an absorbing material obtained from natural fibers, specifically from coconut. The method, which was previously applied to other materials, requires performing measurements of airflow resistivity and of acoustic impedance for samples of the material under study. The equations that govern the acoustic behavior of the material are then derived by means of a least-squares fit of the acoustic impedance and of the propagation constant. These results can be useful since they allow the empirically obtained analytical equations to be easily incorporated in prediction and simulation models of acoustic systems for noise control that incorporate the studied materials. es_ES
dc.description.abstract [ES] En este trabajo se describe el proceso seguido para obtener ecuaciones empíricas del comportamiento acústico de un material absorbente obtenido a partir de fibras naturales, concretamente el coco. El procedimiento, que ha sido ensayado con éxito en otros materiales, implica la realización de medidas de impedancia y resistencia al flujo de muestras del material bajo estudio. Las ecuaciones que gobiernan el comportamiento desde el punto de vista acústico del material se obtienen a partir del ajuste de ecuaciones de comportamiento de la impedancia acústica y la constante de propagación del material. Los resultados son útiles ya que, al disponer de ecuaciones analíticas obtenidas empíricamente, facilitan la incorporación de estos materiales en predicciones mediante métodos numéricos del comportamiento cuando son instalados formando parte de dispositivos para el control del ruido. es_ES
dc.language Inglés es_ES
dc.publisher CSIC es_ES
dc.relation.ispartof Materiales de Construcción es_ES
dc.rights Reconocimiento - No comercial (by-nc) es_ES
dc.subject Acoustic impedance es_ES
dc.subject Absorption coefficient es_ES
dc.subject Natural fibers es_ES
dc.subject Empirical models es_ES
dc.subject Impedancia acústica es_ES
dc.subject Coeficiente de absorción es_ES
dc.subject Fibras naturales es_ES
dc.subject Modelos empíricos es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title A model for acoustic absorbent materials derived from coconut fiber es_ES
dc.title.alternative Un modelo para materiales absorbentes acústicos derivados de la fibra de coco es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3989/mc.2014.00513
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Ramis Soriano, J.; Rey Tormos, RMD.; Alba Fernández, J.; Godinho, L.; Carbajo, J. (2014). A model for acoustic absorbent materials derived from coconut fiber. Materiales de Construcción. 64(313):1-7. doi:10.3989/mc.2014.00513 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.3989/mc.2014.00513 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 7 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 64 es_ES
dc.description.issue 313 es_ES
dc.relation.senia 267249 es_ES
dc.description.references Delany, M. E., & Bazley, E. N. (1970). Acoustical properties of fibrous absorbent materials. Applied Acoustics, 3(2), 105-116. doi:10.1016/0003-682x(70)90031-9 es_ES
dc.description.references Miki, Y. (1990). Acoustical properties of porous materials. Modifications of Delany-Bazley models. Journal of the Acoustical Society of Japan (E), 11(1), 19-24. doi:10.1250/ast.11.19 es_ES
dc.description.references 4. Miki, Y. (1990) Acoustical Properties of Porous Materials-Generalizations of empirical models. J. Acoust. Soc. Jpn. (E) 11 [1], 13–24. es_ES
dc.description.references Dunn, I. P., & Davern, W. A. (1986). Calculation of acoustic impedance of multi-layer absorbers. Applied Acoustics, 19(5), 321-334. doi:10.1016/0003-682x(86)90044-7 es_ES
dc.description.references Garai, M., & Pompoli, F. (2005). A simple empirical model of polyester fibre materials for acoustical applications. Applied Acoustics, 66(12), 1383-1398. doi:10.1016/j.apacoust.2005.04.008 es_ES
dc.description.references Wang, X., Eisenbrey, J., Zeitz, M., & Sun, J. Q. (2004). Multi-stage regression analysis of acoustical properties of polyurethane foams. Journal of Sound and Vibration, 273(4-5), 1109-1117. doi:10.1016/j.jsv.2003.09.039 es_ES
dc.description.references Shoshani, Y., & Yakubov, Y. (2000). Numerical assessment of maximal absorption coefficients for nonwoven fiberwebs. Applied Acoustics, 59(1), 77-87. doi:10.1016/s0003-682x(99)00015-8 es_ES
dc.description.references Voronina, N. (1996). Improved empirical model of sound propagation through a fibrous material. Applied Acoustics, 48(2), 121-132. doi:10.1016/0003-682x(95)00055-e es_ES
dc.description.references Voronina, N. (1998). An empirical model for elastic porous materials. Applied Acoustics, 55(1), 67-83. doi:10.1016/s0003-682x(97)00098-4 es_ES
dc.description.references Voronina, N. (1999). An empirical model for rigid-frame porous materials with low porosity. Applied Acoustics, 58(3), 295-304. doi:10.1016/s0003-682x(98)00076-0 es_ES
dc.description.references Voronina, N. ., & Horoshenkov, K. . (2003). A new empirical model for the acoustic properties of loose granular media. Applied Acoustics, 64(4), 415-432. doi:10.1016/s0003-682x(02)00105-6 es_ES
dc.description.references Asasutjarit, C., Hirunlabh, J., Khedari, J., Charoenvai, S., Zeghmati, B., & Shin, U. C. (2007). Development of coconut coir-based lightweight cement board. Construction and Building Materials, 21(2), 277-288. doi:10.1016/j.conbuildmat.2005.08.028 es_ES
dc.description.references Panyakaew, S., & Fotios, S. (2011). New thermal insulation boards made from coconut husk and bagasse. Energy and Buildings, 43(7), 1732-1739. doi:10.1016/j.enbuild.2011.03.015 es_ES
dc.description.references Hosseini Fouladi, M., Nor, M. J. M., Ayub, M., & Leman, Z. A. (2010). Utilization of coir fiber in multilayer acoustic absorption panel. Applied Acoustics, 71(3), 241-249. doi:10.1016/j.apacoust.2009.09.003 es_ES
dc.description.references Hosseini Fouladi, M., Ayub, M., & Jailani Mohd Nor, M. (2011). Analysis of coir fiber acoustical characteristics. Applied Acoustics, 72(1), 35-42. doi:10.1016/j.apacoust.2010.09.007 es_ES
dc.description.references Nor, M. J. M., Ayub, M., Zulkifli, R., Amin, N., & Fouladi, M. H. (2010). Effect of Different Factors on the Acoustic Absorption of Coir Fiber. Journal of Applied Sciences, 10(22), 2887-2892. doi:10.3923/jas.2010.2887.2892 es_ES
dc.description.references 19. Zulkifli, R.; Nor, M.J.M.; Ismail, A.R.; Nuawi, M.Z.; Abdullah, S.; Tahir, M.F.M.; Rahman, M.N.A. (2009) Comparison of Acoustic Properties between Coir Fibre and Oil Palm Fibre. EJSR, 33 [1], 144–152. es_ES
dc.description.references 20. del Rey, R.; Alba, J.; Sanchís, V. (2007) Proposal of an empirical model for absorbent acoustical materials based in kenaf. 19th International Congress on Acoustics (Madrid) 2–7 September 2007. es_ES
dc.description.references Ramis, J., Alba, J., Del Rey, R., Escuder, E., & Sanchís, V. J. (2010). Nuevos materiales absorbentes acústicos basados en fibra de kenaf. Materiales de Construcción, 60(299), 133-143. doi:10.3989/mc.2010.50809 es_ES
dc.description.references Ingard, K. U., & Dear, T. A. (1985). Measurement of acoustic flow resistance. Journal of Sound and Vibration, 103(4), 567-572. doi:10.1016/s0022-460x(85)80024-9 es_ES
dc.description.references Bies, D. A., & Hansen, C. H. (1980). Flow resistance information for acoustical design. Applied Acoustics, 13(5), 357-391. doi:10.1016/0003-682x(80)90002-x es_ES


This item appears in the following Collection(s)

Show simple item record