- -

A decentralized wireless solution to monitor and diagnose PV solar module performance based on Symmetrized-Shifted Gompertz Functions

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

A decentralized wireless solution to monitor and diagnose PV solar module performance based on Symmetrized-Shifted Gompertz Functions

Show full item record

Molina García, Á.; Campelo Rivadulla, JC.; Blanc Clavero, S.; Serrano Martín, JJ.; García Sánchez, T.; Bueso, MC. (2015). A decentralized wireless solution to monitor and diagnose PV solar module performance based on Symmetrized-Shifted Gompertz Functions. Sensors. 15(8):18459-18479. https://doi.org/10.3390/s150818459

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/56212

Files in this item

Item Metadata

Title: A decentralized wireless solution to monitor and diagnose PV solar module performance based on Symmetrized-Shifted Gompertz Functions
Author: Molina García, Ángel Campelo Rivadulla, José Carlos Blanc Clavero, Sara Serrano Martín, Juan José García Sánchez, Tania Bueso, María C.
UPV Unit: Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors
Issued date:
Abstract:
This paper proposes and assesses an integrated solution to monitor and diagnose photovoltaic (PV) solar modules based on a decentralized wireless sensor acquisition system. Both DC electrical variables and environmental ...[+]
Subjects: Monitoring , Photovoltaic power systems , Solar power generation , Wireless sensor network
Copyrigths: Reconocimiento (by)
Source:
Sensors. (issn: 1424-8220 )
DOI: 10.3390/s150818459
Publisher:
MDPI
Publisher version: http://www.mdpi.com/1424-8220/15/8/18459/htm
Project ID:
info:eu-repo/grantAgreement/Gobierno de la Región de Murcia//15400%2FPI%2F10/ES/No Informado/
Thanks:
The authors are very grateful to Esfera Solar Spain and Angel Turpin for technical support and important contributions to this paper. This work has been financially supported by Fundacion Seneca Regional Agency of Science ...[+]
Type: Artículo

References

Global Wind Report—Annual Market Update 2013http://www.gwec.net/wp-content/uploads/2014/04/GWEC-Global-Wind-Report_9-April-2014.pdf

Bialasiewicz, J. T. (2008). Renewable Energy Systems With Photovoltaic Power Generators: Operation and Modeling. IEEE Transactions on Industrial Electronics, 55(7), 2752-2758. doi:10.1109/tie.2008.920583

Romero-Cadaval, E., Spagnuolo, G., Franquelo, L. G., Ramos-Paja, C. A., Suntio, T., & Xiao, W. M. (2013). Grid-Connected Photovoltaic Generation Plants: Components and Operation. IEEE Industrial Electronics Magazine, 7(3), 6-20. doi:10.1109/mie.2013.2264540 [+]
Global Wind Report—Annual Market Update 2013http://www.gwec.net/wp-content/uploads/2014/04/GWEC-Global-Wind-Report_9-April-2014.pdf

Bialasiewicz, J. T. (2008). Renewable Energy Systems With Photovoltaic Power Generators: Operation and Modeling. IEEE Transactions on Industrial Electronics, 55(7), 2752-2758. doi:10.1109/tie.2008.920583

Romero-Cadaval, E., Spagnuolo, G., Franquelo, L. G., Ramos-Paja, C. A., Suntio, T., & Xiao, W. M. (2013). Grid-Connected Photovoltaic Generation Plants: Components and Operation. IEEE Industrial Electronics Magazine, 7(3), 6-20. doi:10.1109/mie.2013.2264540

http://www.epia.org

Liserre, M., Sauter, T., & Hung, J. (2010). Future Energy Systems: Integrating Renewable Energy Sources into the Smart Power Grid Through Industrial Electronics. IEEE Industrial Electronics Magazine, 4(1), 18-37. doi:10.1109/mie.2010.935861

Yang, Y., Wang, H., & Blaabjerg, F. (2014). Reactive Power Injection Strategies for Single-Phase Photovoltaic Systems Considering Grid Requirements. IEEE Transactions on Industry Applications, 50(6), 4065-4076. doi:10.1109/tia.2014.2346692

http://www.iea.org

Van Dyk, E. E., Gxasheka, A. R., & Meyer, E. L. (2005). Monitoring current–voltage characteristics and energy output of silicon photovoltaic modules. Renewable Energy, 30(3), 399-411. doi:10.1016/j.renene.2004.04.016

Forero, N., Hernández, J., & Gordillo, G. (2006). Development of a monitoring system for a PV solar plant. Energy Conversion and Management, 47(15-16), 2329-2336. doi:10.1016/j.enconman.2005.11.012

Vergura, S., Acciani, G., Amoruso, V., Patrono, G. E., & Vacca, F. (2009). Descriptive and Inferential Statistics for Supervising and Monitoring the Operation of PV Plants. IEEE Transactions on Industrial Electronics, 56(11), 4456-4464. doi:10.1109/tie.2008.927404

Roman, E., Alonso, R., Ibanez, P., Elorduizapatarietxe, S., & Goitia, D. (2006). Intelligent PV Module for Grid-Connected PV Systems. IEEE Transactions on Industrial Electronics, 53(4), 1066-1073. doi:10.1109/tie.2006.878327

Sanchez-Pacheco, F. J., Sotorrio-Ruiz, P. J., Heredia-Larrubia, J. R., Perez-Hidalgo, F., & de Cardona, M. S. (2014). PLC-Based PV Plants Smart Monitoring System: Field Measurements and Uncertainty Estimation. IEEE Transactions on Instrumentation and Measurement, 63(9), 2215-2222. doi:10.1109/tim.2014.2308972

Ayompe, L. M., Duffy, A., McCormack, S. J., & Conlon, M. (2011). Measured performance of a 1.72kW rooftop grid connected photovoltaic system in Ireland. Energy Conversion and Management, 52(2), 816-825. doi:10.1016/j.enconman.2010.08.007

Carullo, A., & Vallan, A. (2012). Outdoor Experimental Laboratory for Long-Term Estimation of Photovoltaic-Plant Performance. IEEE Transactions on Instrumentation and Measurement, 61(5), 1307-1314. doi:10.1109/tim.2011.2180972

Petrone, G., Spagnuolo, G., Teodorescu, R., Veerachary, M., & Vitelli, M. (2008). Reliability Issues in Photovoltaic Power Processing Systems. IEEE Transactions on Industrial Electronics, 55(7), 2569-2580. doi:10.1109/tie.2008.924016

Prieto, M., Pernía, A., Nuño, F., Díaz, J., & Villegas, P. (2014). Development of a Wireless Sensor Network for Individual Monitoring of Panels in a Photovoltaic Plant. Sensors, 14(2), 2379-2396. doi:10.3390/s140202379

Ando, B., Baglio, S., Pistorio, A., Tina, G. M., & Ventura, C. (2015). Sentinella: Smart Monitoring of Photovoltaic Systems at Panel Level. IEEE Transactions on Instrumentation and Measurement, 64(8), 2188-2199. doi:10.1109/tim.2014.2386931

http://www.iea-pvps.org/

Ishaque, K., Salam, Z., & Syafaruddin. (2011). A comprehensive MATLAB Simulink PV system simulator with partial shading capability based on two-diode model. Solar Energy, 85(9), 2217-2227. doi:10.1016/j.solener.2011.06.008

Xiao, W., Dunford, W., Palmer, P., & Capel, A. (2007). Regulation of Photovoltaic Voltage. IEEE Transactions on Industrial Electronics, 54(3), 1365-1374. doi:10.1109/tie.2007.893059

Chan, D. S. H., & Phang, J. C. H. (1987). Analytical methods for the extraction of solar-cell single- and double-diode model parameters from I-V characteristics. IEEE Transactions on Electron Devices, 34(2), 286-293. doi:10.1109/t-ed.1987.22920

Shengyi Liu, & Dougal, R. A. (2002). Dynamic multiphysics model for solar array. IEEE Transactions on Energy Conversion, 17(2), 285-294. doi:10.1109/tec.2002.1009482

Vengatesh, R. P., & Rajan, S. E. (2011). Investigation of cloudless solar radiation with PV module employing Matlab–Simulink. Solar Energy, 85(9), 1727-1734. doi:10.1016/j.solener.2011.03.023

Tian, H., Mancilla-David, F., Ellis, K., Muljadi, E., & Jenkins, P. (2012). A cell-to-module-to-array detailed model for photovoltaic panels. Solar Energy, 86(9), 2695-2706. doi:10.1016/j.solener.2012.06.004

Skoplaki, E., & Palyvos, J. A. (2009). On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations. Solar Energy, 83(5), 614-624. doi:10.1016/j.solener.2008.10.008

Molina-Garcia, A., Guerrero-Perez, J., Bueso, M. C., Kessler, M., & Gomez-Lazaro, E. (2015). A New Solar Module Modeling for PV Applications Based on a Symmetrized and Shifted Gompertz Model. IEEE Transactions on Energy Conversion, 30(1), 51-59. doi:10.1109/tec.2014.2330741

R: A Language and Environment for Statistical Computinghttp://www.R-project.org

Aranda, E., Gomez Galan, J., de Cardona, M., & Andujar Marquez, J. (2009). Measuring the I-V curve of PV generators. IEEE Industrial Electronics Magazine, 3(3), 4-14. doi:10.1109/mie.2009.933882

Willig, A. (2008). Recent and Emerging Topics in Wireless Industrial Communications: A Selection. IEEE Transactions on Industrial Informatics, 4(2), 102-124. doi:10.1109/tii.2008.923194

ZigBee Specificationhttp://www.zigbee.org

STR912FAW33http://www.st.com

JN Wireless Microcontrollershttp://www.jennic.com

Falvo, M. C., & Capparella, S. (2015). Safety issues in PV systems: Design choices for a secure fault detection and for preventing fire risk. Case Studies in Fire Safety, 3, 1-16. doi:10.1016/j.csfs.2014.11.002

Optical Isolation for Solar Power Applicationshttp://www.vishay.com

Design Guidelines for Optocoupler Safety Agency Compliancehttp://www.vishay.com

Optocoupler, Phototransistor Output, High Reliability, 5300 VRMShttp://www.vishay.com

ACS712 Fully Integrated, Hall Effect-Based Linear Current Sensor IC Allegro Microsystemshttp://www-allegromicro.com

Thermometrics.PT1000 Sensorhttp://www.thermometricscorp.com

CMP3 Pyranometerhttp://www.kippzonnen.com

Energy Metering IC with SPI Interface and Active Power Pulse Outputhttp://www.microchip.com

The ELECTRONIC COMPONENTS Superstorehttp://www.futurlec.com/Solar_Cell.shtml

Sanchez, A., Blanc, S., Climent, S., Yuste, P., & Ors, R. (2013). SIVEH: Numerical Computing Simulation of Wireless Energy-Harvesting Sensor Nodes. Sensors, 13(9), 11750-11771. doi:10.3390/s130911750

hotoWatt-PW1650http://www.photowatt.com/

Applications Solars. PW 1650 Data-Sheet and Temperature Coefficienthttp://www.aplicasolars.com/pdf/plaques-fotovoltaiques/pw1650mc.pdf

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record