Mostrar el registro sencillo del ítem
dc.contributor.author | Molina García, Ángel | es_ES |
dc.contributor.author | Campelo Rivadulla, José Carlos | es_ES |
dc.contributor.author | Blanc Clavero, Sara | es_ES |
dc.contributor.author | Serrano Martín, Juan José | es_ES |
dc.contributor.author | García Sánchez, Tania | es_ES |
dc.contributor.author | Bueso, María C. | es_ES |
dc.date.accessioned | 2015-10-19T12:51:15Z | |
dc.date.available | 2015-10-19T12:51:15Z | |
dc.date.issued | 2015-07 | |
dc.identifier.issn | 1424-8220 | |
dc.identifier.uri | http://hdl.handle.net/10251/56212 | |
dc.description.abstract | This paper proposes and assesses an integrated solution to monitor and diagnose photovoltaic (PV) solar modules based on a decentralized wireless sensor acquisition system. Both DC electrical variables and environmental data are collected at PV module level using low-cost and high-energy efficiency node sensors. Data is real-time processed locally and compared with expected PV module performances obtained by a PV module model based on symmetrized-shifted Gompertz functions (as previously developed and assessed by the authors). Sensor nodes send data to a centralized sink-computing module using a multi-hop wireless sensor network architecture. Such integration thus provides extensive analysis of PV installations, and avoids off-line tests or post-processing processes. In comparison with previous approaches, this solution is enhanced with a low-cost system and non-critical performance constraints, and it is suitable for extensive deployment in PV power plants. Moreover, it is easily implemented in existing PV installations, since no additional wiring is required. The system has been implemented and assessed in a Spanish PV power plant connected to the grid. Results and estimations of PV module performances are also included in the paper. | es_ES |
dc.description.sponsorship | The authors are very grateful to Esfera Solar Spain and Angel Turpin for technical support and important contributions to this paper. This work has been financially supported by Fundacion Seneca Regional Agency of Science and Technology, Spain (Ref. 15400/PI/10). | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | MDPI | es_ES |
dc.relation.ispartof | Sensors | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Monitoring | es_ES |
dc.subject | Photovoltaic power systems | es_ES |
dc.subject | Solar power generation | es_ES |
dc.subject | Wireless sensor network | es_ES |
dc.subject.classification | ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES | es_ES |
dc.title | A decentralized wireless solution to monitor and diagnose PV solar module performance based on Symmetrized-Shifted Gompertz Functions | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/s150818459 | |
dc.relation.projectID | info:eu-repo/grantAgreement/Gobierno de la Región de Murcia//15400%2FPI%2F10/ES/No Informado/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors | es_ES |
dc.description.bibliographicCitation | Molina García, Á.; Campelo Rivadulla, JC.; Blanc Clavero, S.; Serrano Martín, JJ.; García Sánchez, T.; Bueso, MC. (2015). A decentralized wireless solution to monitor and diagnose PV solar module performance based on Symmetrized-Shifted Gompertz Functions. Sensors. 15(8):18459-18479. https://doi.org/10.3390/s150818459 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://www.mdpi.com/1424-8220/15/8/18459/htm | es_ES |
dc.description.upvformatpinicio | 18459 | es_ES |
dc.description.upvformatpfin | 18479 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 15 | es_ES |
dc.description.issue | 8 | es_ES |
dc.relation.senia | 293642 | es_ES |
dc.identifier.pmid | 26230694 | en_EN |
dc.identifier.pmcid | PMC4570331 | en_EN |
dc.contributor.funder | Gobierno de la Región de Murcia | es_ES |
dc.description.references | Global Wind Report—Annual Market Update 2013http://www.gwec.net/wp-content/uploads/2014/04/GWEC-Global-Wind-Report_9-April-2014.pdf | es_ES |
dc.description.references | Bialasiewicz, J. T. (2008). Renewable Energy Systems With Photovoltaic Power Generators: Operation and Modeling. IEEE Transactions on Industrial Electronics, 55(7), 2752-2758. doi:10.1109/tie.2008.920583 | es_ES |
dc.description.references | Romero-Cadaval, E., Spagnuolo, G., Franquelo, L. G., Ramos-Paja, C. A., Suntio, T., & Xiao, W. M. (2013). Grid-Connected Photovoltaic Generation Plants: Components and Operation. IEEE Industrial Electronics Magazine, 7(3), 6-20. doi:10.1109/mie.2013.2264540 | es_ES |
dc.description.references | http://www.epia.org | es_ES |
dc.description.references | Liserre, M., Sauter, T., & Hung, J. (2010). Future Energy Systems: Integrating Renewable Energy Sources into the Smart Power Grid Through Industrial Electronics. IEEE Industrial Electronics Magazine, 4(1), 18-37. doi:10.1109/mie.2010.935861 | es_ES |
dc.description.references | Yang, Y., Wang, H., & Blaabjerg, F. (2014). Reactive Power Injection Strategies for Single-Phase Photovoltaic Systems Considering Grid Requirements. IEEE Transactions on Industry Applications, 50(6), 4065-4076. doi:10.1109/tia.2014.2346692 | es_ES |
dc.description.references | http://www.iea.org | es_ES |
dc.description.references | Van Dyk, E. E., Gxasheka, A. R., & Meyer, E. L. (2005). Monitoring current–voltage characteristics and energy output of silicon photovoltaic modules. Renewable Energy, 30(3), 399-411. doi:10.1016/j.renene.2004.04.016 | es_ES |
dc.description.references | Forero, N., Hernández, J., & Gordillo, G. (2006). Development of a monitoring system for a PV solar plant. Energy Conversion and Management, 47(15-16), 2329-2336. doi:10.1016/j.enconman.2005.11.012 | es_ES |
dc.description.references | Vergura, S., Acciani, G., Amoruso, V., Patrono, G. E., & Vacca, F. (2009). Descriptive and Inferential Statistics for Supervising and Monitoring the Operation of PV Plants. IEEE Transactions on Industrial Electronics, 56(11), 4456-4464. doi:10.1109/tie.2008.927404 | es_ES |
dc.description.references | Roman, E., Alonso, R., Ibanez, P., Elorduizapatarietxe, S., & Goitia, D. (2006). Intelligent PV Module for Grid-Connected PV Systems. IEEE Transactions on Industrial Electronics, 53(4), 1066-1073. doi:10.1109/tie.2006.878327 | es_ES |
dc.description.references | Sanchez-Pacheco, F. J., Sotorrio-Ruiz, P. J., Heredia-Larrubia, J. R., Perez-Hidalgo, F., & de Cardona, M. S. (2014). PLC-Based PV Plants Smart Monitoring System: Field Measurements and Uncertainty Estimation. IEEE Transactions on Instrumentation and Measurement, 63(9), 2215-2222. doi:10.1109/tim.2014.2308972 | es_ES |
dc.description.references | Ayompe, L. M., Duffy, A., McCormack, S. J., & Conlon, M. (2011). Measured performance of a 1.72kW rooftop grid connected photovoltaic system in Ireland. Energy Conversion and Management, 52(2), 816-825. doi:10.1016/j.enconman.2010.08.007 | es_ES |
dc.description.references | Carullo, A., & Vallan, A. (2012). Outdoor Experimental Laboratory for Long-Term Estimation of Photovoltaic-Plant Performance. IEEE Transactions on Instrumentation and Measurement, 61(5), 1307-1314. doi:10.1109/tim.2011.2180972 | es_ES |
dc.description.references | Petrone, G., Spagnuolo, G., Teodorescu, R., Veerachary, M., & Vitelli, M. (2008). Reliability Issues in Photovoltaic Power Processing Systems. IEEE Transactions on Industrial Electronics, 55(7), 2569-2580. doi:10.1109/tie.2008.924016 | es_ES |
dc.description.references | Prieto, M., Pernía, A., Nuño, F., Díaz, J., & Villegas, P. (2014). Development of a Wireless Sensor Network for Individual Monitoring of Panels in a Photovoltaic Plant. Sensors, 14(2), 2379-2396. doi:10.3390/s140202379 | es_ES |
dc.description.references | Ando, B., Baglio, S., Pistorio, A., Tina, G. M., & Ventura, C. (2015). Sentinella: Smart Monitoring of Photovoltaic Systems at Panel Level. IEEE Transactions on Instrumentation and Measurement, 64(8), 2188-2199. doi:10.1109/tim.2014.2386931 | es_ES |
dc.description.references | http://www.iea-pvps.org/ | es_ES |
dc.description.references | Ishaque, K., Salam, Z., & Syafaruddin. (2011). A comprehensive MATLAB Simulink PV system simulator with partial shading capability based on two-diode model. Solar Energy, 85(9), 2217-2227. doi:10.1016/j.solener.2011.06.008 | es_ES |
dc.description.references | Xiao, W., Dunford, W., Palmer, P., & Capel, A. (2007). Regulation of Photovoltaic Voltage. IEEE Transactions on Industrial Electronics, 54(3), 1365-1374. doi:10.1109/tie.2007.893059 | es_ES |
dc.description.references | Chan, D. S. H., & Phang, J. C. H. (1987). Analytical methods for the extraction of solar-cell single- and double-diode model parameters from I-V characteristics. IEEE Transactions on Electron Devices, 34(2), 286-293. doi:10.1109/t-ed.1987.22920 | es_ES |
dc.description.references | Shengyi Liu, & Dougal, R. A. (2002). Dynamic multiphysics model for solar array. IEEE Transactions on Energy Conversion, 17(2), 285-294. doi:10.1109/tec.2002.1009482 | es_ES |
dc.description.references | Vengatesh, R. P., & Rajan, S. E. (2011). Investigation of cloudless solar radiation with PV module employing Matlab–Simulink. Solar Energy, 85(9), 1727-1734. doi:10.1016/j.solener.2011.03.023 | es_ES |
dc.description.references | Tian, H., Mancilla-David, F., Ellis, K., Muljadi, E., & Jenkins, P. (2012). A cell-to-module-to-array detailed model for photovoltaic panels. Solar Energy, 86(9), 2695-2706. doi:10.1016/j.solener.2012.06.004 | es_ES |
dc.description.references | Skoplaki, E., & Palyvos, J. A. (2009). On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations. Solar Energy, 83(5), 614-624. doi:10.1016/j.solener.2008.10.008 | es_ES |
dc.description.references | Molina-Garcia, A., Guerrero-Perez, J., Bueso, M. C., Kessler, M., & Gomez-Lazaro, E. (2015). A New Solar Module Modeling for PV Applications Based on a Symmetrized and Shifted Gompertz Model. IEEE Transactions on Energy Conversion, 30(1), 51-59. doi:10.1109/tec.2014.2330741 | es_ES |
dc.description.references | R: A Language and Environment for Statistical Computinghttp://www.R-project.org | es_ES |
dc.description.references | Aranda, E., Gomez Galan, J., de Cardona, M., & Andujar Marquez, J. (2009). Measuring the I-V curve of PV generators. IEEE Industrial Electronics Magazine, 3(3), 4-14. doi:10.1109/mie.2009.933882 | es_ES |
dc.description.references | Willig, A. (2008). Recent and Emerging Topics in Wireless Industrial Communications: A Selection. IEEE Transactions on Industrial Informatics, 4(2), 102-124. doi:10.1109/tii.2008.923194 | es_ES |
dc.description.references | ZigBee Specificationhttp://www.zigbee.org | es_ES |
dc.description.references | STR912FAW33http://www.st.com | es_ES |
dc.description.references | JN Wireless Microcontrollershttp://www.jennic.com | es_ES |
dc.description.references | Falvo, M. C., & Capparella, S. (2015). Safety issues in PV systems: Design choices for a secure fault detection and for preventing fire risk. Case Studies in Fire Safety, 3, 1-16. doi:10.1016/j.csfs.2014.11.002 | es_ES |
dc.description.references | Optical Isolation for Solar Power Applicationshttp://www.vishay.com | es_ES |
dc.description.references | Design Guidelines for Optocoupler Safety Agency Compliancehttp://www.vishay.com | es_ES |
dc.description.references | Optocoupler, Phototransistor Output, High Reliability, 5300 VRMShttp://www.vishay.com | es_ES |
dc.description.references | ACS712 Fully Integrated, Hall Effect-Based Linear Current Sensor IC Allegro Microsystemshttp://www-allegromicro.com | es_ES |
dc.description.references | Thermometrics.PT1000 Sensorhttp://www.thermometricscorp.com | es_ES |
dc.description.references | CMP3 Pyranometerhttp://www.kippzonnen.com | es_ES |
dc.description.references | Energy Metering IC with SPI Interface and Active Power Pulse Outputhttp://www.microchip.com | es_ES |
dc.description.references | The ELECTRONIC COMPONENTS Superstorehttp://www.futurlec.com/Solar_Cell.shtml | es_ES |
dc.description.references | Sanchez, A., Blanc, S., Climent, S., Yuste, P., & Ors, R. (2013). SIVEH: Numerical Computing Simulation of Wireless Energy-Harvesting Sensor Nodes. Sensors, 13(9), 11750-11771. doi:10.3390/s130911750 | es_ES |
dc.description.references | hotoWatt-PW1650http://www.photowatt.com/ | es_ES |
dc.description.references | Applications Solars. PW 1650 Data-Sheet and Temperature Coefficienthttp://www.aplicasolars.com/pdf/plaques-fotovoltaiques/pw1650mc.pdf | es_ES |