- -

A decentralized wireless solution to monitor and diagnose PV solar module performance based on Symmetrized-Shifted Gompertz Functions

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

A decentralized wireless solution to monitor and diagnose PV solar module performance based on Symmetrized-Shifted Gompertz Functions

Show simple item record

Files in this item

dc.contributor.author Molina García, Ángel es_ES
dc.contributor.author Campelo Rivadulla, José Carlos es_ES
dc.contributor.author Blanc Clavero, Sara es_ES
dc.contributor.author Serrano Martín, Juan José es_ES
dc.contributor.author García Sánchez, Tania es_ES
dc.contributor.author Bueso, María C. es_ES
dc.date.accessioned 2015-10-19T12:51:15Z
dc.date.available 2015-10-19T12:51:15Z
dc.date.issued 2015-07
dc.identifier.issn 1424-8220
dc.identifier.uri http://hdl.handle.net/10251/56212
dc.description.abstract This paper proposes and assesses an integrated solution to monitor and diagnose photovoltaic (PV) solar modules based on a decentralized wireless sensor acquisition system. Both DC electrical variables and environmental data are collected at PV module level using low-cost and high-energy efficiency node sensors. Data is real-time processed locally and compared with expected PV module performances obtained by a PV module model based on symmetrized-shifted Gompertz functions (as previously developed and assessed by the authors). Sensor nodes send data to a centralized sink-computing module using a multi-hop wireless sensor network architecture. Such integration thus provides extensive analysis of PV installations, and avoids off-line tests or post-processing processes. In comparison with previous approaches, this solution is enhanced with a low-cost system and non-critical performance constraints, and it is suitable for extensive deployment in PV power plants. Moreover, it is easily implemented in existing PV installations, since no additional wiring is required. The system has been implemented and assessed in a Spanish PV power plant connected to the grid. Results and estimations of PV module performances are also included in the paper. es_ES
dc.description.sponsorship The authors are very grateful to Esfera Solar Spain and Angel Turpin for technical support and important contributions to this paper. This work has been financially supported by Fundacion Seneca Regional Agency of Science and Technology, Spain (Ref. 15400/PI/10). en_EN
dc.language Inglés es_ES
dc.publisher MDPI es_ES
dc.relation.ispartof Sensors es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Monitoring es_ES
dc.subject Photovoltaic power systems es_ES
dc.subject Solar power generation es_ES
dc.subject Wireless sensor network es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title A decentralized wireless solution to monitor and diagnose PV solar module performance based on Symmetrized-Shifted Gompertz Functions es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/s150818459
dc.relation.projectID info:eu-repo/grantAgreement/Gobierno de la Región de Murcia//15400%2FPI%2F10/ES/No Informado/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.description.bibliographicCitation Molina García, Á.; Campelo Rivadulla, JC.; Blanc Clavero, S.; Serrano Martín, JJ.; García Sánchez, T.; Bueso, MC. (2015). A decentralized wireless solution to monitor and diagnose PV solar module performance based on Symmetrized-Shifted Gompertz Functions. Sensors. 15(8):18459-18479. https://doi.org/10.3390/s150818459 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://www.mdpi.com/1424-8220/15/8/18459/htm es_ES
dc.description.upvformatpinicio 18459 es_ES
dc.description.upvformatpfin 18479 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 15 es_ES
dc.description.issue 8 es_ES
dc.relation.senia 293642 es_ES
dc.identifier.pmid 26230694 en_EN
dc.identifier.pmcid PMC4570331 en_EN
dc.contributor.funder Gobierno de la Región de Murcia es_ES
dc.description.references Global Wind Report—Annual Market Update 2013http://www.gwec.net/wp-content/uploads/2014/04/GWEC-Global-Wind-Report_9-April-2014.pdf es_ES
dc.description.references Bialasiewicz, J. T. (2008). Renewable Energy Systems With Photovoltaic Power Generators: Operation and Modeling. IEEE Transactions on Industrial Electronics, 55(7), 2752-2758. doi:10.1109/tie.2008.920583 es_ES
dc.description.references Romero-Cadaval, E., Spagnuolo, G., Franquelo, L. G., Ramos-Paja, C. A., Suntio, T., & Xiao, W. M. (2013). Grid-Connected Photovoltaic Generation Plants: Components and Operation. IEEE Industrial Electronics Magazine, 7(3), 6-20. doi:10.1109/mie.2013.2264540 es_ES
dc.description.references http://www.epia.org es_ES
dc.description.references Liserre, M., Sauter, T., & Hung, J. (2010). Future Energy Systems: Integrating Renewable Energy Sources into the Smart Power Grid Through Industrial Electronics. IEEE Industrial Electronics Magazine, 4(1), 18-37. doi:10.1109/mie.2010.935861 es_ES
dc.description.references Yang, Y., Wang, H., & Blaabjerg, F. (2014). Reactive Power Injection Strategies for Single-Phase Photovoltaic Systems Considering Grid Requirements. IEEE Transactions on Industry Applications, 50(6), 4065-4076. doi:10.1109/tia.2014.2346692 es_ES
dc.description.references http://www.iea.org es_ES
dc.description.references Van Dyk, E. E., Gxasheka, A. R., & Meyer, E. L. (2005). Monitoring current–voltage characteristics and energy output of silicon photovoltaic modules. Renewable Energy, 30(3), 399-411. doi:10.1016/j.renene.2004.04.016 es_ES
dc.description.references Forero, N., Hernández, J., & Gordillo, G. (2006). Development of a monitoring system for a PV solar plant. Energy Conversion and Management, 47(15-16), 2329-2336. doi:10.1016/j.enconman.2005.11.012 es_ES
dc.description.references Vergura, S., Acciani, G., Amoruso, V., Patrono, G. E., & Vacca, F. (2009). Descriptive and Inferential Statistics for Supervising and Monitoring the Operation of PV Plants. IEEE Transactions on Industrial Electronics, 56(11), 4456-4464. doi:10.1109/tie.2008.927404 es_ES
dc.description.references Roman, E., Alonso, R., Ibanez, P., Elorduizapatarietxe, S., & Goitia, D. (2006). Intelligent PV Module for Grid-Connected PV Systems. IEEE Transactions on Industrial Electronics, 53(4), 1066-1073. doi:10.1109/tie.2006.878327 es_ES
dc.description.references Sanchez-Pacheco, F. J., Sotorrio-Ruiz, P. J., Heredia-Larrubia, J. R., Perez-Hidalgo, F., & de Cardona, M. S. (2014). PLC-Based PV Plants Smart Monitoring System: Field Measurements and Uncertainty Estimation. IEEE Transactions on Instrumentation and Measurement, 63(9), 2215-2222. doi:10.1109/tim.2014.2308972 es_ES
dc.description.references Ayompe, L. M., Duffy, A., McCormack, S. J., & Conlon, M. (2011). Measured performance of a 1.72kW rooftop grid connected photovoltaic system in Ireland. Energy Conversion and Management, 52(2), 816-825. doi:10.1016/j.enconman.2010.08.007 es_ES
dc.description.references Carullo, A., & Vallan, A. (2012). Outdoor Experimental Laboratory for Long-Term Estimation of Photovoltaic-Plant Performance. IEEE Transactions on Instrumentation and Measurement, 61(5), 1307-1314. doi:10.1109/tim.2011.2180972 es_ES
dc.description.references Petrone, G., Spagnuolo, G., Teodorescu, R., Veerachary, M., & Vitelli, M. (2008). Reliability Issues in Photovoltaic Power Processing Systems. IEEE Transactions on Industrial Electronics, 55(7), 2569-2580. doi:10.1109/tie.2008.924016 es_ES
dc.description.references Prieto, M., Pernía, A., Nuño, F., Díaz, J., & Villegas, P. (2014). Development of a Wireless Sensor Network for Individual Monitoring of Panels in a Photovoltaic Plant. Sensors, 14(2), 2379-2396. doi:10.3390/s140202379 es_ES
dc.description.references Ando, B., Baglio, S., Pistorio, A., Tina, G. M., & Ventura, C. (2015). Sentinella: Smart Monitoring of Photovoltaic Systems at Panel Level. IEEE Transactions on Instrumentation and Measurement, 64(8), 2188-2199. doi:10.1109/tim.2014.2386931 es_ES
dc.description.references http://www.iea-pvps.org/ es_ES
dc.description.references Ishaque, K., Salam, Z., & Syafaruddin. (2011). A comprehensive MATLAB Simulink PV system simulator with partial shading capability based on two-diode model. Solar Energy, 85(9), 2217-2227. doi:10.1016/j.solener.2011.06.008 es_ES
dc.description.references Xiao, W., Dunford, W., Palmer, P., & Capel, A. (2007). Regulation of Photovoltaic Voltage. IEEE Transactions on Industrial Electronics, 54(3), 1365-1374. doi:10.1109/tie.2007.893059 es_ES
dc.description.references Chan, D. S. H., & Phang, J. C. H. (1987). Analytical methods for the extraction of solar-cell single- and double-diode model parameters from I-V characteristics. IEEE Transactions on Electron Devices, 34(2), 286-293. doi:10.1109/t-ed.1987.22920 es_ES
dc.description.references Shengyi Liu, & Dougal, R. A. (2002). Dynamic multiphysics model for solar array. IEEE Transactions on Energy Conversion, 17(2), 285-294. doi:10.1109/tec.2002.1009482 es_ES
dc.description.references Vengatesh, R. P., & Rajan, S. E. (2011). Investigation of cloudless solar radiation with PV module employing Matlab–Simulink. Solar Energy, 85(9), 1727-1734. doi:10.1016/j.solener.2011.03.023 es_ES
dc.description.references Tian, H., Mancilla-David, F., Ellis, K., Muljadi, E., & Jenkins, P. (2012). A cell-to-module-to-array detailed model for photovoltaic panels. Solar Energy, 86(9), 2695-2706. doi:10.1016/j.solener.2012.06.004 es_ES
dc.description.references Skoplaki, E., & Palyvos, J. A. (2009). On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations. Solar Energy, 83(5), 614-624. doi:10.1016/j.solener.2008.10.008 es_ES
dc.description.references Molina-Garcia, A., Guerrero-Perez, J., Bueso, M. C., Kessler, M., & Gomez-Lazaro, E. (2015). A New Solar Module Modeling for PV Applications Based on a Symmetrized and Shifted Gompertz Model. IEEE Transactions on Energy Conversion, 30(1), 51-59. doi:10.1109/tec.2014.2330741 es_ES
dc.description.references R: A Language and Environment for Statistical Computinghttp://www.R-project.org es_ES
dc.description.references Aranda, E., Gomez Galan, J., de Cardona, M., & Andujar Marquez, J. (2009). Measuring the I-V curve of PV generators. IEEE Industrial Electronics Magazine, 3(3), 4-14. doi:10.1109/mie.2009.933882 es_ES
dc.description.references Willig, A. (2008). Recent and Emerging Topics in Wireless Industrial Communications: A Selection. IEEE Transactions on Industrial Informatics, 4(2), 102-124. doi:10.1109/tii.2008.923194 es_ES
dc.description.references ZigBee Specificationhttp://www.zigbee.org es_ES
dc.description.references STR912FAW33http://www.st.com es_ES
dc.description.references JN Wireless Microcontrollershttp://www.jennic.com es_ES
dc.description.references Falvo, M. C., & Capparella, S. (2015). Safety issues in PV systems: Design choices for a secure fault detection and for preventing fire risk. Case Studies in Fire Safety, 3, 1-16. doi:10.1016/j.csfs.2014.11.002 es_ES
dc.description.references Optical Isolation for Solar Power Applicationshttp://www.vishay.com es_ES
dc.description.references Design Guidelines for Optocoupler Safety Agency Compliancehttp://www.vishay.com es_ES
dc.description.references Optocoupler, Phototransistor Output, High Reliability, 5300 VRMShttp://www.vishay.com es_ES
dc.description.references ACS712 Fully Integrated, Hall Effect-Based Linear Current Sensor IC Allegro Microsystemshttp://www-allegromicro.com es_ES
dc.description.references Thermometrics.PT1000 Sensorhttp://www.thermometricscorp.com es_ES
dc.description.references CMP3 Pyranometerhttp://www.kippzonnen.com es_ES
dc.description.references Energy Metering IC with SPI Interface and Active Power Pulse Outputhttp://www.microchip.com es_ES
dc.description.references The ELECTRONIC COMPONENTS Superstorehttp://www.futurlec.com/Solar_Cell.shtml es_ES
dc.description.references Sanchez, A., Blanc, S., Climent, S., Yuste, P., & Ors, R. (2013). SIVEH: Numerical Computing Simulation of Wireless Energy-Harvesting Sensor Nodes. Sensors, 13(9), 11750-11771. doi:10.3390/s130911750 es_ES
dc.description.references hotoWatt-PW1650http://www.photowatt.com/ es_ES
dc.description.references Applications Solars. PW 1650 Data-Sheet and Temperature Coefficienthttp://www.aplicasolars.com/pdf/plaques-fotovoltaiques/pw1650mc.pdf es_ES


This item appears in the following Collection(s)

Show simple item record