Mostrar el registro sencillo del ítem
dc.contributor.author | Vázquez Gutiérrez, José Luis | es_ES |
dc.contributor.author | Hernando Hernando, Mª Isabel | es_ES |
dc.contributor.author | Quiles Chuliá, Mª Desamparados | es_ES |
dc.date.accessioned | 2015-10-22T11:21:07Z | |
dc.date.available | 2015-10-22T11:21:07Z | |
dc.date.issued | 2013-07 | |
dc.identifier.issn | 1438-2377 | |
dc.identifier.uri | http://hdl.handle.net/10251/56347 | |
dc.description.abstract | Abstract Condensed tannins are important bioactive compounds largely present in persimmon (Diospyros kaki L.f.). The aim of this work was to study the effect of the structural changes occurred during refrigerated storage in persimmon cubes treated with high hydrostatic pressure (HHP) on the solubility and location of tannins, and some physicochemical properties. Persimmon cubes were submitted to 200 MPa for 3 and 6 min at 37 C and stored at 4 C for 28 days. The microstructural study was carried out by low-temperature scanning electron microscopy, light microscopy and transmission electron microscopy. The physicochemical properties studied were total soluble tannins (TST), total soluble solids (TSS), pH, lightness, firmness and cohesiveness. Microstructural studies showed that HHP treatment causes cell wall and membrane disruption in persimmon tissue. Retraction of the tonoplast and loss of cell turgor were greater as the storage time increased. Precipitated tannins inside and outside the cells and a progressive separation of adjacent cells during the storage time could be observed. Significant (P\0.05) decreases in TST, TSS and lightness as well as a significant (P\0.05) increase in pH took place in HHP-treated samples after 7 days of storage. Samples treated for 3 min showed higher firmness than the rest of the samples during the whole storage period, whereas HHP-treated samples showed higher cohesiveness than the control samples. The effects of HHP treatments and later storage at 4 C on microstructure, tannin solubility and extractability, and some physicochemical properties of persimmon cubes depend on the treatment conditions and the storage time. HHP treatment might decrease persimmon astringency as well as increase bioactive compounds accessibility. | es_ES |
dc.description.sponsorship | The authors wish to acknowledge the Spanish Ministry of Science and Innovation for the financial support (project AGL2008-04-798-C02-02) and the FPU grant awarded to J.L. Vazquez-Gutierrez. Jose L. Vazquez-Gutierrez has received a PhD grant from the Spanish Ministry of Science and Innovation. The authors also thank to ANECOOP and Consejo Superior de Investigaciones Cientificas (CSIC) for the supply and processing of the samples, respectively. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Springer Verlag (Germany) | es_ES |
dc.relation.ispartof | European Food Research and Technology | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Persimmon | es_ES |
dc.subject | High hydrostatic pressure | es_ES |
dc.subject | Tannin | es_ES |
dc.subject | Shelf life | es_ES |
dc.subject | Microstructure | es_ES |
dc.subject.classification | TECNOLOGIA DE ALIMENTOS | es_ES |
dc.title | Changes in tannin solubility and microstructure of high hydrostatic pressure-treated persimmon cubes during storage at 4ºC | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s00217-013-2010-1 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//AGL2008-04798-C02-02/ES/ESTUDIO DE LA RELACION "ESTRUCTURA-FUNCIONALIDAD NUTRICIONAL" EN TEJIDOS VEGETALES TRATADOS CON ALTAS PRESIONES HIDROSTATICAS/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments | es_ES |
dc.description.bibliographicCitation | Vázquez Gutiérrez, JL.; Hernando Hernando, MI.; Quiles Chuliá, MD. (2013). Changes in tannin solubility and microstructure of high hydrostatic pressure-treated persimmon cubes during storage at 4ºC. European Food Research and Technology. 237(1):9-17. https://doi.org/10.1007/s00217-013-2010-1 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1007/s00217-013-2010-1 | es_ES |
dc.description.upvformatpinicio | 9 | es_ES |
dc.description.upvformatpfin | 17 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 237 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.senia | 253030 | es_ES |
dc.identifier.eissn | 1438-2385 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Chung KT, Wong TY, Wei CL, Huang YM, Lin Y (1998) Tannins and human health: a review. Crit Rev Food Sci Nutr 38:421–464 | es_ES |
dc.description.references | Arnal L, Del Río MA (2003) Removing astringency by carbon dioxide and nitrogen enriched atmospheres in persimmon fruit cv. ‘Rojo brillante’. J Food Sci 68:1516–1518 | es_ES |
dc.description.references | Matsuo T, Itoo S (1982) A model experiment for de-astringency of persimmon fruit with high carbon dioxide treatment: in vitro gelation of kaki-tannin by reacting with acetaldehyde. Agric Biol Chem 46:683–689 | es_ES |
dc.description.references | Taira S, Watanabe S (1995) Changes in soluble tannins of frozen ‘Hiratanenashi’ persimmon fruits during storage and after thawing. Bull Yamagata Univ Agric Sci 12:119–123 | es_ES |
dc.description.references | Salvador A, Arnal L, Besada C, Larrea V, Quiles A, Pérez-Munuera I (2007) Physiological and structural changes during ripening and deastringency treatment of persimmon fruit cv. “Rojo Brillante”. Postharv Biol Technol 46:181–188 | es_ES |
dc.description.references | Taira S, Ono M, Matsumoto N (1997) Reduction of persimmon astringency by complex formation between pectin and tannins. Postharv Biol Technol 12:265–271 | es_ES |
dc.description.references | Oey I, Lille M, Van Loey A, Hendrickx M (2008) Effect of high-pressure processing on colour, texture and flavour of fruit- and vegetable-based food products: a review. Trends Food Sci Technol 19:320–328 | es_ES |
dc.description.references | Sánchez-Moreno C, De Ancos B, Plaza L, Elez-Martínez P, Cano MP (2009) Nutritional approaches and health-related properties of plant foods processed by high pressure and pulsed electric fields. Crit Rev Food Sci Nutr 49:552–576 | es_ES |
dc.description.references | Ferrari G, Maresca P, Ciccarone R (2010) The application of high hydrostatic pressure for the stabilization of functional foods: pomegranate juice. J Food Eng 100:245–253 | es_ES |
dc.description.references | Nguyen LT, Tay A, Balasubramaniam VM, Legan JD, Turek EJ, Gupta R (2010) Evaluating the impact of thermal and pressure treatment in preserving textural quality of selected foods. Food Sci Technol 43:525–534 | es_ES |
dc.description.references | Sila DN, Duvetter T, De Roeck A, Verlent I, Smout C, Moates GK, Hills BP, Waldron KK, Hendrickx M, Van Loey A (2008) Texture changes of processed fruits and vegetables: potential use of high-pressure processing. Trends Food Sci Technol 19:309–319 | es_ES |
dc.description.references | Basak S, Ramaswamy HS (1998) Effect of high pressure processing on the texture of selected fruits and vegetables. J Text Stud 29:587–601 | es_ES |
dc.description.references | Jacobo-Velázquez DA, Hernández-Brenes C (2010) Biochemical changes during the storage of high hydrostatic pressure processed avocado paste. J Food Sci 75:S264–S270 | es_ES |
dc.description.references | Jacobo-Velázquez DA, Hernández-Brenes C (2011) Sensory shelf-life limiting factor of high hydrostatic pressure processed avocado paste. J Food Sci 76:S388–S395 | es_ES |
dc.description.references | Jacobo-Velázquez DA, Hernández-Brenes C (2012) Stability of avocado paste carotenoids as affected by high hydrostatic pressure processing and storage. Innov Food Sci Emerg Technol. doi: 10.1016/j.ifset.2012.05.001 | es_ES |
dc.description.references | Plaza L, Sánchez-Moreno C, De Ancos B, Elez-Martínez P, Martín-Belloso O, Cano MP (2011) Carotenoid and flavanone content during refrigerated storage of orange juice processed by high-pressure, pulsed electric fields and low pasteurization. LWT-Food Sci Technol 44:834–839 | es_ES |
dc.description.references | Torres B, Tiwari BK, Patras A, Cullen PJ, Brunton N, O’Donnell CP (2011) Stability of anthocyanins and ascorbic acid of high pressure processed blood orange juice during storage. Innov Food Sci Emerg Technol 12:93–97 | es_ES |
dc.description.references | Varela-Santos E, Ochoa-Martinez A, Tabilo-Munizaga G, Reyes JE, Pérez-Won M, Briones-Labarca V, Morales-Castro J (2012) Effect of high hydrostatic pressure (HHP) processing on physicochemical properties, bioactive compounds and shelf-life of pomegranate juice. Innov Food Sci Emerg Technol 13:13–22 | es_ES |
dc.description.references | De Ancos B, González E, Cano MP (2000) Effect of high-pressure treatment on the carotenoid composition and the radical scavenging activity of persimmon fruit purees. J Agric Food Chem 48:3542–3548 | es_ES |
dc.description.references | Plaza L, Colina C, De Ancos B, Sánchez-Moreno C, Cano MP (2012) Influence of ripening and astringency on carotenoid content of high-pressure treated persimmon fruit (Diospyros kaki L.). Food Chem 130:591–597 | es_ES |
dc.description.references | Vázquez-Gutiérrez JL, Quiles A, Hernando I, Pérez-Munuera I (2011) Changes in the microstructure and location of some bioactive compounds in persimmons treated by high hydrostatic pressure. Postharv Biol Technol 61:137–144 | es_ES |
dc.description.references | Vázquez-Gutiérrez JL, Hernández-Carrión M, Quiles A, Hernando I, Pérez-Munuera I (2012) Impact of high hydrostatic pressures on the structure, diffusion of soluble compounds and textural properties of persimmon ‘Rojo Brillante’. Food Res Int 47:218–222 | es_ES |
dc.description.references | De Ancos B, Sgroppo S, Plaza L, Cano MP (2002) Possible nutritional and health-related value promotion in orange juice preserved by high-pressure treatment. J Sci Food Agric 82:790–796 | es_ES |
dc.description.references | Qiu W, Jiang H, Wang H, Gao Y (2006) Effect of high hydrostatic pressure on lycopene stability. Food Chem 97:516–523 | es_ES |
dc.description.references | Dede S, Alpas H, Bayindirli A (2007) High hydrostatic pressure treatment and storage of carrot and tomato juices: antioxidant activity and microbial safety. J Sci Food Agric 87:773–782 | es_ES |
dc.description.references | Roldán-Marín E, Sánchez-Moreno C, Lloría R, de Ancos B, Cano MP (2009) Onion high-pressure processing: flavonol content and antioxidant activity. LWT-Food Sci Technol 42:835–841 | es_ES |
dc.description.references | Taira S (1995) Astringency in persimmon. In: Linskens HF, Jackson JF (eds) Fruit analysis. Springer, Hannover | es_ES |
dc.description.references | Arnal L, Del Río MA (2004) Quality of persimmon fruit cv. ‘Rojo Brillante’ during storage at different temperatures. Spanish J Agric Res 2:243–247 | es_ES |
dc.description.references | Neri L, Hernando I, Pérez-Munuera I, Sacchetti G, Pittia P (2001) Effect of blanching in water and sugar solutions on texture and microstructure of sliced carrots. J Food Sci 76:E23–E30 | es_ES |
dc.description.references | Besada C, Arnal L, Salvador A (2008) Improving storability of persimmon cv. Rojo Brillante by combined use of preharvest and postharvest treatments. Postharv Biol Technol 50:169–175 | es_ES |