- -

Changes in tannin solubility and microstructure of high hydrostatic pressure-treated persimmon cubes during storage at 4ºC

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Changes in tannin solubility and microstructure of high hydrostatic pressure-treated persimmon cubes during storage at 4ºC

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Vázquez Gutiérrez, José Luis es_ES
dc.contributor.author Hernando Hernando, Mª Isabel es_ES
dc.contributor.author Quiles Chuliá, Mª Desamparados es_ES
dc.date.accessioned 2015-10-22T11:21:07Z
dc.date.available 2015-10-22T11:21:07Z
dc.date.issued 2013-07
dc.identifier.issn 1438-2377
dc.identifier.uri http://hdl.handle.net/10251/56347
dc.description.abstract Abstract Condensed tannins are important bioactive compounds largely present in persimmon (Diospyros kaki L.f.). The aim of this work was to study the effect of the structural changes occurred during refrigerated storage in persimmon cubes treated with high hydrostatic pressure (HHP) on the solubility and location of tannins, and some physicochemical properties. Persimmon cubes were submitted to 200 MPa for 3 and 6 min at 37 C and stored at 4 C for 28 days. The microstructural study was carried out by low-temperature scanning electron microscopy, light microscopy and transmission electron microscopy. The physicochemical properties studied were total soluble tannins (TST), total soluble solids (TSS), pH, lightness, firmness and cohesiveness. Microstructural studies showed that HHP treatment causes cell wall and membrane disruption in persimmon tissue. Retraction of the tonoplast and loss of cell turgor were greater as the storage time increased. Precipitated tannins inside and outside the cells and a progressive separation of adjacent cells during the storage time could be observed. Significant (P\0.05) decreases in TST, TSS and lightness as well as a significant (P\0.05) increase in pH took place in HHP-treated samples after 7 days of storage. Samples treated for 3 min showed higher firmness than the rest of the samples during the whole storage period, whereas HHP-treated samples showed higher cohesiveness than the control samples. The effects of HHP treatments and later storage at 4 C on microstructure, tannin solubility and extractability, and some physicochemical properties of persimmon cubes depend on the treatment conditions and the storage time. HHP treatment might decrease persimmon astringency as well as increase bioactive compounds accessibility. es_ES
dc.description.sponsorship The authors wish to acknowledge the Spanish Ministry of Science and Innovation for the financial support (project AGL2008-04-798-C02-02) and the FPU grant awarded to J.L. Vazquez-Gutierrez. Jose L. Vazquez-Gutierrez has received a PhD grant from the Spanish Ministry of Science and Innovation. The authors also thank to ANECOOP and Consejo Superior de Investigaciones Cientificas (CSIC) for the supply and processing of the samples, respectively. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof European Food Research and Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Persimmon es_ES
dc.subject High hydrostatic pressure es_ES
dc.subject Tannin es_ES
dc.subject Shelf life es_ES
dc.subject Microstructure es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title Changes in tannin solubility and microstructure of high hydrostatic pressure-treated persimmon cubes during storage at 4ºC es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00217-013-2010-1
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//AGL2008-04798-C02-02/ES/ESTUDIO DE LA RELACION "ESTRUCTURA-FUNCIONALIDAD NUTRICIONAL" EN TEJIDOS VEGETALES TRATADOS CON ALTAS PRESIONES HIDROSTATICAS/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.description.bibliographicCitation Vázquez Gutiérrez, JL.; Hernando Hernando, MI.; Quiles Chuliá, MD. (2013). Changes in tannin solubility and microstructure of high hydrostatic pressure-treated persimmon cubes during storage at 4ºC. European Food Research and Technology. 237(1):9-17. https://doi.org/10.1007/s00217-013-2010-1 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s00217-013-2010-1 es_ES
dc.description.upvformatpinicio 9 es_ES
dc.description.upvformatpfin 17 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 237 es_ES
dc.description.issue 1 es_ES
dc.relation.senia 253030 es_ES
dc.identifier.eissn 1438-2385
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Chung KT, Wong TY, Wei CL, Huang YM, Lin Y (1998) Tannins and human health: a review. Crit Rev Food Sci Nutr 38:421–464 es_ES
dc.description.references Arnal L, Del Río MA (2003) Removing astringency by carbon dioxide and nitrogen enriched atmospheres in persimmon fruit cv. ‘Rojo brillante’. J Food Sci 68:1516–1518 es_ES
dc.description.references Matsuo T, Itoo S (1982) A model experiment for de-astringency of persimmon fruit with high carbon dioxide treatment: in vitro gelation of kaki-tannin by reacting with acetaldehyde. Agric Biol Chem 46:683–689 es_ES
dc.description.references Taira S, Watanabe S (1995) Changes in soluble tannins of frozen ‘Hiratanenashi’ persimmon fruits during storage and after thawing. Bull Yamagata Univ Agric Sci 12:119–123 es_ES
dc.description.references Salvador A, Arnal L, Besada C, Larrea V, Quiles A, Pérez-Munuera I (2007) Physiological and structural changes during ripening and deastringency treatment of persimmon fruit cv. “Rojo Brillante”. Postharv Biol Technol 46:181–188 es_ES
dc.description.references Taira S, Ono M, Matsumoto N (1997) Reduction of persimmon astringency by complex formation between pectin and tannins. Postharv Biol Technol 12:265–271 es_ES
dc.description.references Oey I, Lille M, Van Loey A, Hendrickx M (2008) Effect of high-pressure processing on colour, texture and flavour of fruit- and vegetable-based food products: a review. Trends Food Sci Technol 19:320–328 es_ES
dc.description.references Sánchez-Moreno C, De Ancos B, Plaza L, Elez-Martínez P, Cano MP (2009) Nutritional approaches and health-related properties of plant foods processed by high pressure and pulsed electric fields. Crit Rev Food Sci Nutr 49:552–576 es_ES
dc.description.references Ferrari G, Maresca P, Ciccarone R (2010) The application of high hydrostatic pressure for the stabilization of functional foods: pomegranate juice. J Food Eng 100:245–253 es_ES
dc.description.references Nguyen LT, Tay A, Balasubramaniam VM, Legan JD, Turek EJ, Gupta R (2010) Evaluating the impact of thermal and pressure treatment in preserving textural quality of selected foods. Food Sci Technol 43:525–534 es_ES
dc.description.references Sila DN, Duvetter T, De Roeck A, Verlent I, Smout C, Moates GK, Hills BP, Waldron KK, Hendrickx M, Van Loey A (2008) Texture changes of processed fruits and vegetables: potential use of high-pressure processing. Trends Food Sci Technol 19:309–319 es_ES
dc.description.references Basak S, Ramaswamy HS (1998) Effect of high pressure processing on the texture of selected fruits and vegetables. J Text Stud 29:587–601 es_ES
dc.description.references Jacobo-Velázquez DA, Hernández-Brenes C (2010) Biochemical changes during the storage of high hydrostatic pressure processed avocado paste. J Food Sci 75:S264–S270 es_ES
dc.description.references Jacobo-Velázquez DA, Hernández-Brenes C (2011) Sensory shelf-life limiting factor of high hydrostatic pressure processed avocado paste. J Food Sci 76:S388–S395 es_ES
dc.description.references Jacobo-Velázquez DA, Hernández-Brenes C (2012) Stability of avocado paste carotenoids as affected by high hydrostatic pressure processing and storage. Innov Food Sci Emerg Technol. doi: 10.1016/j.ifset.2012.05.001 es_ES
dc.description.references Plaza L, Sánchez-Moreno C, De Ancos B, Elez-Martínez P, Martín-Belloso O, Cano MP (2011) Carotenoid and flavanone content during refrigerated storage of orange juice processed by high-pressure, pulsed electric fields and low pasteurization. LWT-Food Sci Technol 44:834–839 es_ES
dc.description.references Torres B, Tiwari BK, Patras A, Cullen PJ, Brunton N, O’Donnell CP (2011) Stability of anthocyanins and ascorbic acid of high pressure processed blood orange juice during storage. Innov Food Sci Emerg Technol 12:93–97 es_ES
dc.description.references Varela-Santos E, Ochoa-Martinez A, Tabilo-Munizaga G, Reyes JE, Pérez-Won M, Briones-Labarca V, Morales-Castro J (2012) Effect of high hydrostatic pressure (HHP) processing on physicochemical properties, bioactive compounds and shelf-life of pomegranate juice. Innov Food Sci Emerg Technol 13:13–22 es_ES
dc.description.references De Ancos B, González E, Cano MP (2000) Effect of high-pressure treatment on the carotenoid composition and the radical scavenging activity of persimmon fruit purees. J Agric Food Chem 48:3542–3548 es_ES
dc.description.references Plaza L, Colina C, De Ancos B, Sánchez-Moreno C, Cano MP (2012) Influence of ripening and astringency on carotenoid content of high-pressure treated persimmon fruit (Diospyros kaki L.). Food Chem 130:591–597 es_ES
dc.description.references Vázquez-Gutiérrez JL, Quiles A, Hernando I, Pérez-Munuera I (2011) Changes in the microstructure and location of some bioactive compounds in persimmons treated by high hydrostatic pressure. Postharv Biol Technol 61:137–144 es_ES
dc.description.references Vázquez-Gutiérrez JL, Hernández-Carrión M, Quiles A, Hernando I, Pérez-Munuera I (2012) Impact of high hydrostatic pressures on the structure, diffusion of soluble compounds and textural properties of persimmon ‘Rojo Brillante’. Food Res Int 47:218–222 es_ES
dc.description.references De Ancos B, Sgroppo S, Plaza L, Cano MP (2002) Possible nutritional and health-related value promotion in orange juice preserved by high-pressure treatment. J Sci Food Agric 82:790–796 es_ES
dc.description.references Qiu W, Jiang H, Wang H, Gao Y (2006) Effect of high hydrostatic pressure on lycopene stability. Food Chem 97:516–523 es_ES
dc.description.references Dede S, Alpas H, Bayindirli A (2007) High hydrostatic pressure treatment and storage of carrot and tomato juices: antioxidant activity and microbial safety. J Sci Food Agric 87:773–782 es_ES
dc.description.references Roldán-Marín E, Sánchez-Moreno C, Lloría R, de Ancos B, Cano MP (2009) Onion high-pressure processing: flavonol content and antioxidant activity. LWT-Food Sci Technol 42:835–841 es_ES
dc.description.references Taira S (1995) Astringency in persimmon. In: Linskens HF, Jackson JF (eds) Fruit analysis. Springer, Hannover es_ES
dc.description.references Arnal L, Del Río MA (2004) Quality of persimmon fruit cv. ‘Rojo Brillante’ during storage at different temperatures. Spanish J Agric Res 2:243–247 es_ES
dc.description.references Neri L, Hernando I, Pérez-Munuera I, Sacchetti G, Pittia P (2001) Effect of blanching in water and sugar solutions on texture and microstructure of sliced carrots. J Food Sci 76:E23–E30 es_ES
dc.description.references Besada C, Arnal L, Salvador A (2008) Improving storability of persimmon cv. Rojo Brillante by combined use of preharvest and postharvest treatments. Postharv Biol Technol 50:169–175 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem