- -

Local convergence and dynamical analysis of a new family of optimal fourth-order iterative methods

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Local convergence and dynamical analysis of a new family of optimal fourth-order iterative methods

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Artidiello Moreno, Santiago de Jesús es_ES
dc.contributor.author Chicharro López, Francisco Israel es_ES
dc.contributor.author Cordero Barbero, Alicia es_ES
dc.contributor.author Torregrosa Sánchez, Juan Ramón es_ES
dc.date.accessioned 2015-10-30T06:59:23Z
dc.date.available 2015-10-30T06:59:23Z
dc.date.issued 2013-10
dc.identifier.issn 0020-7160
dc.identifier.uri http://hdl.handle.net/10251/56765
dc.description.abstract In this paper, a family of new fourth-order optimal iterative methods for solving nonlinear equations is proposed. The classical King s family of fourth-order schemes is obtained as an special case. We also present results for describing the conjugacy classes and dynamics of some of the presented methods for complex polynomials of different degrees. es_ES
dc.description.sponsorship The authors thank the referees for their valuable comments and for their suggestions to improve the readability of the paper. This research was supported by Ministerio de Ciencia y Tecnologia MTM2011-28636-C02-02 and FONDOCYT Republica Dominicana. en_EN
dc.language Inglés es_ES
dc.publisher Taylor & Francis Ltd es_ES
dc.relation.ispartof International Journal of Computer Mathematics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Iterative methods es_ES
dc.subject Order of convergence es_ES
dc.subject Rational map es_ES
dc.subject Basin of attraction es_ES
dc.subject Conjugacy classes es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Local convergence and dynamical analysis of a new family of optimal fourth-order iterative methods es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/00207160.2012.748900
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MTM2011-28636-C02-02/ES/DISEÑO Y ANALISIS DE METODOS EFICIENTES DE RESOLUCION DE ECUACIONES Y SISTEMAS NO LINEALES/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Artidiello Moreno, SDJ.; Chicharro López, FI.; Cordero Barbero, A.; Torregrosa Sánchez, JR. (2013). Local convergence and dynamical analysis of a new family of optimal fourth-order iterative methods. International Journal of Computer Mathematics. 90(10):2049-2060. https://doi.org/10.1080/00207160.2012.748900 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1080/00207160.2012.748900 es_ES
dc.description.upvformatpinicio 2049 es_ES
dc.description.upvformatpfin 2060 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 90 es_ES
dc.description.issue 10 es_ES
dc.relation.senia 252679 es_ES
dc.identifier.eissn 1029-0265
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Fondo Nacional de Innovación y Desarrollo Científico y Tecnológico, República Dominicana es_ES
dc.description.references Bi, W., Ren, H., & Wu, Q. (2009). Three-step iterative methods with eighth-order convergence for solving nonlinear equations. Journal of Computational and Applied Mathematics, 225(1), 105-112. doi:10.1016/j.cam.2008.07.004 es_ES
dc.description.references Blanchard, P. (1995). The dynamics of Newton’s method. Proceedings of Symposia in Applied Mathematics, 139-154. doi:10.1090/psapm/049/1315536 es_ES
dc.description.references Chun, C., Lee, M. Y., Neta, B., & Džunić, J. (2012). On optimal fourth-order iterative methods free from second derivative and their dynamics. Applied Mathematics and Computation, 218(11), 6427-6438. doi:10.1016/j.amc.2011.12.013 es_ES
dc.description.references Douady, A., & Hubbard, J. H. (1985). On the dynamics of polynomial-like mappings. Annales scientifiques de l’École normale supérieure, 18(2), 287-343. doi:10.24033/asens.1491 es_ES
dc.description.references DRAKOPOULOS, V. (1999). HOW IS THE DYNAMICS OF KÖNIG ITERATION FUNCTIONS AFFECTED BY THEIR ADDITIONAL FIXED POINTS? Fractals, 07(03), 327-334. doi:10.1142/s0218348x99000323 es_ES
dc.description.references King, R. F. (1973). A Family of Fourth Order Methods for Nonlinear Equations. SIAM Journal on Numerical Analysis, 10(5), 876-879. doi:10.1137/0710072 es_ES
dc.description.references Kneisl, K. (2001). Julia sets for the super-Newton method, Cauchy’s method, and Halley’s method. Chaos: An Interdisciplinary Journal of Nonlinear Science, 11(2), 359-370. doi:10.1063/1.1368137 es_ES
dc.description.references Kung, H. T., & Traub, J. F. (1974). Optimal Order of One-Point and Multipoint Iteration. Journal of the ACM, 21(4), 643-651. doi:10.1145/321850.321860 es_ES
dc.description.references Wang, X., & Liu, L. (2009). Two new families of sixth-order methods for solving non-linear equations. Applied Mathematics and Computation, 213(1), 73-78. doi:10.1016/j.amc.2009.03.007 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem