- -

Design and experimental verification of ridge gap waveguide in bed of nails for parallel-plate mode suppression

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Design and experimental verification of ridge gap waveguide in bed of nails for parallel-plate mode suppression

Show full item record

Kildal, P.; Zaman, AU.; Rajo Iglesias, E.; Alfonso Alós, E.; Valero-Nogueira, A. (2011). Design and experimental verification of ridge gap waveguide in bed of nails for parallel-plate mode suppression. IET Microwaves Antennas and Propagation. 5(3):262-270. doi:10.1049/iet-map.2010.0089

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/56853

Files in this item

Item Metadata

Title: Design and experimental verification of ridge gap waveguide in bed of nails for parallel-plate mode suppression
Author: Kildal, Per-Simon Zaman, Ashraf Uz Rajo Iglesias, Eva Alfonso Alós, Esperanza Valero-Nogueira, Alejandro
UPV Unit: Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia
Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Issued date:
Abstract:
This study describes the design and experimental verification of the ridge gap waveguide, appearing in the gap between parallel metal plates. One of the plates has a texture in the form of a wave-guiding metal ridge ...[+]
Subjects: Bed of nails , Experimental verification , Hardware demonstrator , Hollow waveguides , Low loss , Measured results , Metal posts , Mode suppression , Parallel metal plates , Parallel plates , Stopband , Transverse electromagnetic mode , Two plates , Vector networks , Wave-guiding , Electric network analysis , Metals , Waveguides , Electric network analyzers
Copyrigths: Reserva de todos los derechos
Source:
IET Microwaves Antennas and Propagation. (issn: 1751-8725 )
DOI: 10.1049/iet-map.2010.0089
Publisher:
Institution of Engineering and Technology (IET)
Publisher version: http://dx.doi.org/10.1049/iet-map.2010.0089
Type: Artículo

References

Kildal, P.-S., Alfonso, E., Valero-Nogueira, A., & Rajo-Iglesias, E. (2009). Local Metamaterial-Based Waveguides in Gaps Between Parallel Metal Plates. IEEE Antennas and Wireless Propagation Letters, 8, 84-87. doi:10.1109/lawp.2008.2011147

Kildal, P.-S.: ‘Waveguides and transmission lines in gaps between parallel conducting surfaces’, (European Patent Application EP08159791.6)7 July 2008

Rajo-Iglesias, E., Zaman, A. U., & Kildal, P.-S. (2010). Parallel Plate Cavity Mode Suppression in Microstrip Circuit Packages Using a Lid of Nails. IEEE Microwave and Wireless Components Letters, 20(1), 31-33. doi:10.1109/lmwc.2009.2035960 [+]
Kildal, P.-S., Alfonso, E., Valero-Nogueira, A., & Rajo-Iglesias, E. (2009). Local Metamaterial-Based Waveguides in Gaps Between Parallel Metal Plates. IEEE Antennas and Wireless Propagation Letters, 8, 84-87. doi:10.1109/lawp.2008.2011147

Kildal, P.-S.: ‘Waveguides and transmission lines in gaps between parallel conducting surfaces’, (European Patent Application EP08159791.6)7 July 2008

Rajo-Iglesias, E., Zaman, A. U., & Kildal, P.-S. (2010). Parallel Plate Cavity Mode Suppression in Microstrip Circuit Packages Using a Lid of Nails. IEEE Microwave and Wireless Components Letters, 20(1), 31-33. doi:10.1109/lmwc.2009.2035960

Kildal, P.-S. (1990). Artificially soft and hard surfaces in electromagnetics. IEEE Transactions on Antennas and Propagation, 38(10), 1537-1544. doi:10.1109/8.59765

Valero-Nogueira, A., Alfonso, E., Herranz, J. I., & Kildal, P.-S. (2009). Experimental Demonstration of Local Quasi-TEM Gap Modes in Single-Hard-Wall Waveguides. IEEE Microwave and Wireless Components Letters, 19(9), 536-538. doi:10.1109/lmwc.2009.2027051

Lier, E. (1990). Analysis of soft and hard strip-loaded horns using a circular cylindrical model. IEEE Transactions on Antennas and Propagation, 38(6), 783-793. doi:10.1109/8.55573

Sievenpiper, D., Lijun Zhang, Broas, R. F. J., Alexopolous, N. G., & Yablonovitch, E. (1999). High-impedance electromagnetic surfaces with a forbidden frequency band. IEEE Transactions on Microwave Theory and Techniques, 47(11), 2059-2074. doi:10.1109/22.798001

Silveirinha, M. G., Fernandes, C. A., & Costa, J. R. (2008). Electromagnetic Characterization of Textured Surfaces Formed by Metallic Pins. IEEE Transactions on Antennas and Propagation, 56(2), 405-415. doi:10.1109/tap.2007.915442

Lindell, I. V. (2000). Ideal boundary and generalised soft and hard conditions. IEE Proceedings - Microwaves, Antennas and Propagation, 147(6), 495. doi:10.1049/ip-map:20000827

Valero-Nogueira, A., Alfonso, E., Herranz, J. I., & Baquero, M. (2007). Planar slot-array antenna fed by an oversized quasi-TEM waveguide. Microwave and Optical Technology Letters, 49(8), 1875-1877. doi:10.1002/mop.22586

Šipuš, Z., Merkel, H., & Kildal, P.-S. (1997). Green’s functions for planar soft and hard surfaces derived by asymptotic boundary conditions. IEE Proceedings - Microwaves, Antennas and Propagation, 144(5), 321. doi:10.1049/ip-map:19971335

CST Microwave Studio 2008. Available at: www.cst.com

Kehn, M. N. M., & Kildal, P.-S. (2005). Miniaturized rectangular hard waveguides for use in multifrequency phased arrays. IEEE Transactions on Antennas and Propagation, 53(1), 100-109. doi:10.1109/tap.2004.840519

Malcolm Ng Mou Kehn, M. N. M., Nannetti, Cucini, Maci, & Kildal. (2006). Analysis of dispersion in dipole-FSS loaded hard rectangular waveguide. IEEE Transactions on Antennas and Propagation, 54(12), 2275-2282. doi:10.1109/tap.2006.879198

Grbic, A., & Eleftheriades, G. V. (2003). Periodic analysis of a 2-D negative refractive index transmission line structure. IEEE Transactions on Antennas and Propagation, 51(10), 2604-2611. doi:10.1109/tap.2003.817543

Eleftheriades, G.V., and Balmain, K.G.: ‘Metamaterials for controlling and guiding electromagnetic radiation’, (US Patent 6859114 – Filed 2 June 2003)

McKinzie, W.F.: ‘Circuit and method for suppression of electromagnetic coupling and switching noise in multilayer printed circuit boards’, (US Patent No. 7,215,007 B2)

Schellenberg, J. M. (1995). CAD models for suspended and inverted microstrip. IEEE Transactions on Microwave Theory and Techniques, 43(6), 1247-1252. doi:10.1109/22.390179

Anderson, T. N. (1956). Rectangular and Ridge Waveguide. IEEE Transactions on Microwave Theory and Techniques, 4(4), 201-209. doi:10.1109/tmtt.1956.1125063

Pozar, D.: ‘Microwave engineering’, 3rd(Wiley 2005), p. 139

Bosiljevac, M., Sipus, Z., & Kildal, P.-S. (2010). Construction of Green’s functions of parallel plates with periodic texture with application to gap waveguides – a plane-wave spectral-domain approach. IET Microwaves, Antennas & Propagation, 4(11), 1799. doi:10.1049/iet-map.2009.0399

Zaman, A. U., Rajo-Iglesias, E., Alfonso, E., & Kildal, P.-S. (2009). Design of transition from coaxial line to ridge gap waveguide. 2009 IEEE Antennas and Propagation Society International Symposium. doi:10.1109/aps.2009.5172186

Sharp, E. D. (1963). A High-Power Wide-Band Waffle-Iron Filter. IEEE Transactions on Microwave Theory and Techniques, 11(2), 111-116. doi:10.1109/tmtt.1963.1125611

KIRINO, H., OGAWA, K., & OHNO, T. (2008). A Variable Phase Shifter Using a Movable Waffle Iron Metal Plate and Its Applications to Phased Array Antennas. IEICE Transactions on Communications, E91-B(6), 1773-1782. doi:10.1093/ietcom/e91-b.6.1773

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record