- -

Design and experimental verification of ridge gap waveguide in bed of nails for parallel-plate mode suppression

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Design and experimental verification of ridge gap waveguide in bed of nails for parallel-plate mode suppression

Show simple item record

Files in this item

dc.contributor.author Kildal, Per-Simon es_ES
dc.contributor.author Zaman, Ashraf Uz es_ES
dc.contributor.author Rajo Iglesias, Eva es_ES
dc.contributor.author Alfonso Alós, Esperanza es_ES
dc.contributor.author Valero-Nogueira, Alejandro es_ES
dc.date.accessioned 2015-11-02T11:16:50Z
dc.date.available 2015-11-02T11:16:50Z
dc.date.issued 2011-02
dc.identifier.issn 1751-8725
dc.identifier.uri http://hdl.handle.net/10251/56853
dc.description.abstract This study describes the design and experimental verification of the ridge gap waveguide, appearing in the gap between parallel metal plates. One of the plates has a texture in the form of a wave-guiding metal ridge surrounded by metal posts. The latter posts, referred to as a pin surface or bed of nails, are designed to give a stopband for the normal parallel-plate modes between 10 and 23 GHz. The hardware demonstrator includes two 90° bends and two capacitive coupled coaxial transitions enabling measurements with a vector network analyser (VNA). The measured results verify the large bandwidth and low losses of the quasi-transverse electromagnetic (TEM) mode propagating along the guiding ridge, and that 90° bends can be designed in the same way as for microstrip lines. The demonstrator is designed for use around 15 GHz. Still, the ridge gap waveguide is more advantageous for frequencies above 30 GHz, because it can be realised entirely from metal using milling or moulding, and there are no requirements for conducting joints between the two plates that otherwise is a problem when realising conventional hollow waveguides. © 2011 The Institution of Engineering and Technology. es_ES
dc.language Inglés es_ES
dc.publisher Institution of Engineering and Technology (IET) es_ES
dc.relation.ispartof IET Microwaves Antennas and Propagation es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Bed of nails es_ES
dc.subject Experimental verification es_ES
dc.subject Hardware demonstrator es_ES
dc.subject Hollow waveguides es_ES
dc.subject Low loss es_ES
dc.subject Measured results es_ES
dc.subject Metal posts es_ES
dc.subject Mode suppression es_ES
dc.subject Parallel metal plates es_ES
dc.subject Parallel plates es_ES
dc.subject Stopband es_ES
dc.subject Transverse electromagnetic mode es_ES
dc.subject Two plates es_ES
dc.subject Vector networks es_ES
dc.subject Wave-guiding es_ES
dc.subject Electric network analysis es_ES
dc.subject Metals es_ES
dc.subject Waveguides es_ES
dc.subject Electric network analyzers es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Design and experimental verification of ridge gap waveguide in bed of nails for parallel-plate mode suppression es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1049/iet-map.2010.0089
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Kildal, P.; Zaman, AU.; Rajo Iglesias, E.; Alfonso Alós, E.; Valero-Nogueira, A. (2011). Design and experimental verification of ridge gap waveguide in bed of nails for parallel-plate mode suppression. IET Microwaves Antennas and Propagation. 5(3):262-270. doi:10.1049/iet-map.2010.0089 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1049/iet-map.2010.0089 es_ES
dc.description.upvformatpinicio 262 es_ES
dc.description.upvformatpfin 270 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 5 es_ES
dc.description.issue 3 es_ES
dc.relation.senia 206260 es_ES
dc.description.references Kildal, P.-S., Alfonso, E., Valero-Nogueira, A., & Rajo-Iglesias, E. (2009). Local Metamaterial-Based Waveguides in Gaps Between Parallel Metal Plates. IEEE Antennas and Wireless Propagation Letters, 8, 84-87. doi:10.1109/lawp.2008.2011147 es_ES
dc.description.references Kildal, P.-S.: ‘Waveguides and transmission lines in gaps between parallel conducting surfaces’, (European Patent Application EP08159791.6)7 July 2008 es_ES
dc.description.references Rajo-Iglesias, E., Zaman, A. U., & Kildal, P.-S. (2010). Parallel Plate Cavity Mode Suppression in Microstrip Circuit Packages Using a Lid of Nails. IEEE Microwave and Wireless Components Letters, 20(1), 31-33. doi:10.1109/lmwc.2009.2035960 es_ES
dc.description.references Kildal, P.-S. (1990). Artificially soft and hard surfaces in electromagnetics. IEEE Transactions on Antennas and Propagation, 38(10), 1537-1544. doi:10.1109/8.59765 es_ES
dc.description.references Valero-Nogueira, A., Alfonso, E., Herranz, J. I., & Kildal, P.-S. (2009). Experimental Demonstration of Local Quasi-TEM Gap Modes in Single-Hard-Wall Waveguides. IEEE Microwave and Wireless Components Letters, 19(9), 536-538. doi:10.1109/lmwc.2009.2027051 es_ES
dc.description.references Lier, E. (1990). Analysis of soft and hard strip-loaded horns using a circular cylindrical model. IEEE Transactions on Antennas and Propagation, 38(6), 783-793. doi:10.1109/8.55573 es_ES
dc.description.references Sievenpiper, D., Lijun Zhang, Broas, R. F. J., Alexopolous, N. G., & Yablonovitch, E. (1999). High-impedance electromagnetic surfaces with a forbidden frequency band. IEEE Transactions on Microwave Theory and Techniques, 47(11), 2059-2074. doi:10.1109/22.798001 es_ES
dc.description.references Silveirinha, M. G., Fernandes, C. A., & Costa, J. R. (2008). Electromagnetic Characterization of Textured Surfaces Formed by Metallic Pins. IEEE Transactions on Antennas and Propagation, 56(2), 405-415. doi:10.1109/tap.2007.915442 es_ES
dc.description.references Lindell, I. V. (2000). Ideal boundary and generalised soft and hard conditions. IEE Proceedings - Microwaves, Antennas and Propagation, 147(6), 495. doi:10.1049/ip-map:20000827 es_ES
dc.description.references Valero-Nogueira, A., Alfonso, E., Herranz, J. I., & Baquero, M. (2007). Planar slot-array antenna fed by an oversized quasi-TEM waveguide. Microwave and Optical Technology Letters, 49(8), 1875-1877. doi:10.1002/mop.22586 es_ES
dc.description.references Šipuš, Z., Merkel, H., & Kildal, P.-S. (1997). Green’s functions for planar soft and hard surfaces derived by asymptotic boundary conditions. IEE Proceedings - Microwaves, Antennas and Propagation, 144(5), 321. doi:10.1049/ip-map:19971335 es_ES
dc.description.references CST Microwave Studio 2008. Available at: www.cst.com es_ES
dc.description.references Kehn, M. N. M., & Kildal, P.-S. (2005). Miniaturized rectangular hard waveguides for use in multifrequency phased arrays. IEEE Transactions on Antennas and Propagation, 53(1), 100-109. doi:10.1109/tap.2004.840519 es_ES
dc.description.references Malcolm Ng Mou Kehn, M. N. M., Nannetti, Cucini, Maci, & Kildal. (2006). Analysis of dispersion in dipole-FSS loaded hard rectangular waveguide. IEEE Transactions on Antennas and Propagation, 54(12), 2275-2282. doi:10.1109/tap.2006.879198 es_ES
dc.description.references Grbic, A., & Eleftheriades, G. V. (2003). Periodic analysis of a 2-D negative refractive index transmission line structure. IEEE Transactions on Antennas and Propagation, 51(10), 2604-2611. doi:10.1109/tap.2003.817543 es_ES
dc.description.references Eleftheriades, G.V., and Balmain, K.G.: ‘Metamaterials for controlling and guiding electromagnetic radiation’, (US Patent 6859114 – Filed 2 June 2003) es_ES
dc.description.references McKinzie, W.F.: ‘Circuit and method for suppression of electromagnetic coupling and switching noise in multilayer printed circuit boards’, (US Patent No. 7,215,007 B2) es_ES
dc.description.references Schellenberg, J. M. (1995). CAD models for suspended and inverted microstrip. IEEE Transactions on Microwave Theory and Techniques, 43(6), 1247-1252. doi:10.1109/22.390179 es_ES
dc.description.references Anderson, T. N. (1956). Rectangular and Ridge Waveguide. IEEE Transactions on Microwave Theory and Techniques, 4(4), 201-209. doi:10.1109/tmtt.1956.1125063 es_ES
dc.description.references Pozar, D.: ‘Microwave engineering’, 3rd(Wiley 2005), p. 139 es_ES
dc.description.references Bosiljevac, M., Sipus, Z., & Kildal, P.-S. (2010). Construction of Green’s functions of parallel plates with periodic texture with application to gap waveguides – a plane-wave spectral-domain approach. IET Microwaves, Antennas & Propagation, 4(11), 1799. doi:10.1049/iet-map.2009.0399 es_ES
dc.description.references Zaman, A. U., Rajo-Iglesias, E., Alfonso, E., & Kildal, P.-S. (2009). Design of transition from coaxial line to ridge gap waveguide. 2009 IEEE Antennas and Propagation Society International Symposium. doi:10.1109/aps.2009.5172186 es_ES
dc.description.references Sharp, E. D. (1963). A High-Power Wide-Band Waffle-Iron Filter. IEEE Transactions on Microwave Theory and Techniques, 11(2), 111-116. doi:10.1109/tmtt.1963.1125611 es_ES
dc.description.references KIRINO, H., OGAWA, K., & OHNO, T. (2008). A Variable Phase Shifter Using a Movable Waffle Iron Metal Plate and Its Applications to Phased Array Antennas. IEICE Transactions on Communications, E91-B(6), 1773-1782. doi:10.1093/ietcom/e91-b.6.1773 es_ES


This item appears in the following Collection(s)

Show simple item record