Mostrar el registro sencillo del ítem
dc.contributor.author | Kildal, Per-Simon | es_ES |
dc.contributor.author | Zaman, Ashraf Uz | es_ES |
dc.contributor.author | Rajo Iglesias, Eva | es_ES |
dc.contributor.author | Alfonso Alós, Esperanza | es_ES |
dc.contributor.author | Valero-Nogueira, Alejandro | es_ES |
dc.date.accessioned | 2015-11-02T11:16:50Z | |
dc.date.available | 2015-11-02T11:16:50Z | |
dc.date.issued | 2011-02 | |
dc.identifier.issn | 1751-8725 | |
dc.identifier.uri | http://hdl.handle.net/10251/56853 | |
dc.description.abstract | This study describes the design and experimental verification of the ridge gap waveguide, appearing in the gap between parallel metal plates. One of the plates has a texture in the form of a wave-guiding metal ridge surrounded by metal posts. The latter posts, referred to as a pin surface or bed of nails, are designed to give a stopband for the normal parallel-plate modes between 10 and 23 GHz. The hardware demonstrator includes two 90° bends and two capacitive coupled coaxial transitions enabling measurements with a vector network analyser (VNA). The measured results verify the large bandwidth and low losses of the quasi-transverse electromagnetic (TEM) mode propagating along the guiding ridge, and that 90° bends can be designed in the same way as for microstrip lines. The demonstrator is designed for use around 15 GHz. Still, the ridge gap waveguide is more advantageous for frequencies above 30 GHz, because it can be realised entirely from metal using milling or moulding, and there are no requirements for conducting joints between the two plates that otherwise is a problem when realising conventional hollow waveguides. © 2011 The Institution of Engineering and Technology. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Institution of Engineering and Technology (IET) | es_ES |
dc.relation.ispartof | IET Microwaves Antennas and Propagation | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Bed of nails | es_ES |
dc.subject | Experimental verification | es_ES |
dc.subject | Hardware demonstrator | es_ES |
dc.subject | Hollow waveguides | es_ES |
dc.subject | Low loss | es_ES |
dc.subject | Measured results | es_ES |
dc.subject | Metal posts | es_ES |
dc.subject | Mode suppression | es_ES |
dc.subject | Parallel metal plates | es_ES |
dc.subject | Parallel plates | es_ES |
dc.subject | Stopband | es_ES |
dc.subject | Transverse electromagnetic mode | es_ES |
dc.subject | Two plates | es_ES |
dc.subject | Vector networks | es_ES |
dc.subject | Wave-guiding | es_ES |
dc.subject | Electric network analysis | es_ES |
dc.subject | Metals | es_ES |
dc.subject | Waveguides | es_ES |
dc.subject | Electric network analyzers | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | Design and experimental verification of ridge gap waveguide in bed of nails for parallel-plate mode suppression | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1049/iet-map.2010.0089 | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.description.bibliographicCitation | Kildal, P.; Zaman, AU.; Rajo Iglesias, E.; Alfonso Alós, E.; Valero-Nogueira, A. (2011). Design and experimental verification of ridge gap waveguide in bed of nails for parallel-plate mode suppression. IET Microwaves Antennas and Propagation. 5(3):262-270. doi:10.1049/iet-map.2010.0089 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1049/iet-map.2010.0089 | es_ES |
dc.description.upvformatpinicio | 262 | es_ES |
dc.description.upvformatpfin | 270 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 5 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.senia | 206260 | es_ES |
dc.description.references | Kildal, P.-S., Alfonso, E., Valero-Nogueira, A., & Rajo-Iglesias, E. (2009). Local Metamaterial-Based Waveguides in Gaps Between Parallel Metal Plates. IEEE Antennas and Wireless Propagation Letters, 8, 84-87. doi:10.1109/lawp.2008.2011147 | es_ES |
dc.description.references | Kildal, P.-S.: ‘Waveguides and transmission lines in gaps between parallel conducting surfaces’, (European Patent Application EP08159791.6)7 July 2008 | es_ES |
dc.description.references | Rajo-Iglesias, E., Zaman, A. U., & Kildal, P.-S. (2010). Parallel Plate Cavity Mode Suppression in Microstrip Circuit Packages Using a Lid of Nails. IEEE Microwave and Wireless Components Letters, 20(1), 31-33. doi:10.1109/lmwc.2009.2035960 | es_ES |
dc.description.references | Kildal, P.-S. (1990). Artificially soft and hard surfaces in electromagnetics. IEEE Transactions on Antennas and Propagation, 38(10), 1537-1544. doi:10.1109/8.59765 | es_ES |
dc.description.references | Valero-Nogueira, A., Alfonso, E., Herranz, J. I., & Kildal, P.-S. (2009). Experimental Demonstration of Local Quasi-TEM Gap Modes in Single-Hard-Wall Waveguides. IEEE Microwave and Wireless Components Letters, 19(9), 536-538. doi:10.1109/lmwc.2009.2027051 | es_ES |
dc.description.references | Lier, E. (1990). Analysis of soft and hard strip-loaded horns using a circular cylindrical model. IEEE Transactions on Antennas and Propagation, 38(6), 783-793. doi:10.1109/8.55573 | es_ES |
dc.description.references | Sievenpiper, D., Lijun Zhang, Broas, R. F. J., Alexopolous, N. G., & Yablonovitch, E. (1999). High-impedance electromagnetic surfaces with a forbidden frequency band. IEEE Transactions on Microwave Theory and Techniques, 47(11), 2059-2074. doi:10.1109/22.798001 | es_ES |
dc.description.references | Silveirinha, M. G., Fernandes, C. A., & Costa, J. R. (2008). Electromagnetic Characterization of Textured Surfaces Formed by Metallic Pins. IEEE Transactions on Antennas and Propagation, 56(2), 405-415. doi:10.1109/tap.2007.915442 | es_ES |
dc.description.references | Lindell, I. V. (2000). Ideal boundary and generalised soft and hard conditions. IEE Proceedings - Microwaves, Antennas and Propagation, 147(6), 495. doi:10.1049/ip-map:20000827 | es_ES |
dc.description.references | Valero-Nogueira, A., Alfonso, E., Herranz, J. I., & Baquero, M. (2007). Planar slot-array antenna fed by an oversized quasi-TEM waveguide. Microwave and Optical Technology Letters, 49(8), 1875-1877. doi:10.1002/mop.22586 | es_ES |
dc.description.references | Šipuš, Z., Merkel, H., & Kildal, P.-S. (1997). Green’s functions for planar soft and hard surfaces derived by asymptotic boundary conditions. IEE Proceedings - Microwaves, Antennas and Propagation, 144(5), 321. doi:10.1049/ip-map:19971335 | es_ES |
dc.description.references | CST Microwave Studio 2008. Available at: www.cst.com | es_ES |
dc.description.references | Kehn, M. N. M., & Kildal, P.-S. (2005). Miniaturized rectangular hard waveguides for use in multifrequency phased arrays. IEEE Transactions on Antennas and Propagation, 53(1), 100-109. doi:10.1109/tap.2004.840519 | es_ES |
dc.description.references | Malcolm Ng Mou Kehn, M. N. M., Nannetti, Cucini, Maci, & Kildal. (2006). Analysis of dispersion in dipole-FSS loaded hard rectangular waveguide. IEEE Transactions on Antennas and Propagation, 54(12), 2275-2282. doi:10.1109/tap.2006.879198 | es_ES |
dc.description.references | Grbic, A., & Eleftheriades, G. V. (2003). Periodic analysis of a 2-D negative refractive index transmission line structure. IEEE Transactions on Antennas and Propagation, 51(10), 2604-2611. doi:10.1109/tap.2003.817543 | es_ES |
dc.description.references | Eleftheriades, G.V., and Balmain, K.G.: ‘Metamaterials for controlling and guiding electromagnetic radiation’, (US Patent 6859114 – Filed 2 June 2003) | es_ES |
dc.description.references | McKinzie, W.F.: ‘Circuit and method for suppression of electromagnetic coupling and switching noise in multilayer printed circuit boards’, (US Patent No. 7,215,007 B2) | es_ES |
dc.description.references | Schellenberg, J. M. (1995). CAD models for suspended and inverted microstrip. IEEE Transactions on Microwave Theory and Techniques, 43(6), 1247-1252. doi:10.1109/22.390179 | es_ES |
dc.description.references | Anderson, T. N. (1956). Rectangular and Ridge Waveguide. IEEE Transactions on Microwave Theory and Techniques, 4(4), 201-209. doi:10.1109/tmtt.1956.1125063 | es_ES |
dc.description.references | Pozar, D.: ‘Microwave engineering’, 3rd(Wiley 2005), p. 139 | es_ES |
dc.description.references | Bosiljevac, M., Sipus, Z., & Kildal, P.-S. (2010). Construction of Green’s functions of parallel plates with periodic texture with application to gap waveguides – a plane-wave spectral-domain approach. IET Microwaves, Antennas & Propagation, 4(11), 1799. doi:10.1049/iet-map.2009.0399 | es_ES |
dc.description.references | Zaman, A. U., Rajo-Iglesias, E., Alfonso, E., & Kildal, P.-S. (2009). Design of transition from coaxial line to ridge gap waveguide. 2009 IEEE Antennas and Propagation Society International Symposium. doi:10.1109/aps.2009.5172186 | es_ES |
dc.description.references | Sharp, E. D. (1963). A High-Power Wide-Band Waffle-Iron Filter. IEEE Transactions on Microwave Theory and Techniques, 11(2), 111-116. doi:10.1109/tmtt.1963.1125611 | es_ES |
dc.description.references | KIRINO, H., OGAWA, K., & OHNO, T. (2008). A Variable Phase Shifter Using a Movable Waffle Iron Metal Plate and Its Applications to Phased Array Antennas. IEICE Transactions on Communications, E91-B(6), 1773-1782. doi:10.1093/ietcom/e91-b.6.1773 | es_ES |