- -

Change detection of isolated housing using a new hybrid approach based on object classification with optical and TerraSAR-X data

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Change detection of isolated housing using a new hybrid approach based on object classification with optical and TerraSAR-X data

Mostrar el registro completo del ítem

Vidal Pantaleoni, A.; Moreno Cambroreno, MDR. (2011). Change detection of isolated housing using a new hybrid approach based on object classification with optical and TerraSAR-X data. International Journal of Remote Sensing. 32(24):9621-9635. doi:10.1080/01431161.2011.571297

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/56993

Ficheros en el ítem

Metadatos del ítem

Título: Change detection of isolated housing using a new hybrid approach based on object classification with optical and TerraSAR-X data
Autor: Vidal Pantaleoni, Ana Moreno Cambroreno, María del Rocío
Entidad UPV: Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Fecha difusión:
Resumen:
Optical and microwave high spatial resolution images are now available for a wide range of applications. In this work, they have been applied for the semi-automatic change detection of isolated housing in agricultural ...[+]
Palabras clave: Agricultural areas , Change detection , Classification process , High resolution image , High spatial resolution images , Hybrid approach , Hybrid methodologies , Image differencing , Isolated buildings , Lower complexity , Object classification , Optical data , Radar data , Segmentation process , Semi-automatics , Techniques used , TerraSAR-X , Housing , Image segmentation , Signal detection , Synthetic aperture radar , Agricultural land , Building , Complexity , Detection method , Housing market , Microwave imagery , Satellite imagery , Spatial resolution
Derechos de uso: Reserva de todos los derechos
Fuente:
International Journal of Remote Sensing. (issn: 0143-1161 ) (eissn: 1366-5901 )
DOI: 10.1080/01431161.2011.571297
Editorial:
Taylor & Francis (Routledge): STM, Behavioural Science and Public Health Titles
Versión del editor: http://dx.doi.org/10.1080/01431161.2011.571297
Tipo: Artículo

References

BLAES, X., VANHALLE, L., & DEFOURNY, P. (2005). Efficiency of crop identification based on optical and SAR image time series. Remote Sensing of Environment, 96(3-4), 352-365. doi:10.1016/j.rse.2005.03.010

Chen, Y., Shi, P., Fung, T., Wang, J., & Li, X. (2007). Object‐oriented classification for urban land cover mapping with ASTER imagery. International Journal of Remote Sensing, 28(20), 4645-4651. doi:10.1080/01431160500444731

Dalla Mura, M., Benediktsson, J. A., Bovolo, F., & Bruzzone, L. (2008). An Unsupervised Technique Based on Morphological Filters for Change Detection in Very High Resolution Images. IEEE Geoscience and Remote Sensing Letters, 5(3), 433-437. doi:10.1109/lgrs.2008.917726 [+]
BLAES, X., VANHALLE, L., & DEFOURNY, P. (2005). Efficiency of crop identification based on optical and SAR image time series. Remote Sensing of Environment, 96(3-4), 352-365. doi:10.1016/j.rse.2005.03.010

Chen, Y., Shi, P., Fung, T., Wang, J., & Li, X. (2007). Object‐oriented classification for urban land cover mapping with ASTER imagery. International Journal of Remote Sensing, 28(20), 4645-4651. doi:10.1080/01431160500444731

Dalla Mura, M., Benediktsson, J. A., Bovolo, F., & Bruzzone, L. (2008). An Unsupervised Technique Based on Morphological Filters for Change Detection in Very High Resolution Images. IEEE Geoscience and Remote Sensing Letters, 5(3), 433-437. doi:10.1109/lgrs.2008.917726

Dell’Acqua, F., & Gamba, P. (2006). Discriminating urban environments using multiscale texture and multiple SAR images. International Journal of Remote Sensing, 27(18), 3797-3812. doi:10.1080/01431160600557572

Haralick, R. M., Shanmugam, K., & Dinstein, I. (1973). Textural Features for Image Classification. IEEE Transactions on Systems, Man, and Cybernetics, SMC-3(6), 610-621. doi:10.1109/tsmc.1973.4309314

Im, J., Jensen, J. R., & Tullis, J. A. (2008). Object‐based change detection using correlation image analysis and image segmentation. International Journal of Remote Sensing, 29(2), 399-423. doi:10.1080/01431160601075582

Lhomme, S., He, D., Weber, C., & Morin, D. (2009). A new approach to building identification from very‐high‐spatial‐resolution images. International Journal of Remote Sensing, 30(5), 1341-1354. doi:10.1080/01431160802509017

LOBO, A., CHIC, O., & CASTERAD, A. (1996). Classification of Mediterranean crops with multisensor data: per-pixel versus per-object statistics and image segmentation. International Journal of Remote Sensing, 17(12), 2385-2400. doi:10.1080/01431169608948779

Lu, D., Mausel, P., Brondízio, E., & Moran, E. (2004). Change detection techniques. International Journal of Remote Sensing, 25(12), 2365-2401. doi:10.1080/0143116031000139863

Shimabukuro, Y. E., Almeida‐Filho, R., Kuplich, T. M., & de Freitas, R. M. (2007). Quantifying optical and SAR image relationships for tropical landscape features in the Amazônia. International Journal of Remote Sensing, 28(17), 3831-3840. doi:10.1080/01431160701236829

Stramondo, S., Bignami, C., Chini, M., Pierdicca, N., & Tertulliani, A. (2006). Satellite radar and optical remote sensing for earthquake damage detection: results from different case studies. International Journal of Remote Sensing, 27(20), 4433-4447. doi:10.1080/01431160600675895

Yuan, D., & Elvidge, C. D. (1996). Comparison of relative radiometric normalization techniques. ISPRS Journal of Photogrammetry and Remote Sensing, 51(3), 117-126. doi:10.1016/0924-2716(96)00018-4

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem