- -

Temperature gradient sensor based on a long-fiber Bragg grating and time-frequency analysis

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Temperature gradient sensor based on a long-fiber Bragg grating and time-frequency analysis

Show full item record

Ricchiuti, AL.; Barrera Vilar, D.; Nonaka, K.; Sales Maicas, S. (2014). Temperature gradient sensor based on a long-fiber Bragg grating and time-frequency analysis. Optics Letters. 39(19):5729-5731. doi:10.1364/OL.39.005729

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/57000

Files in this item

Item Metadata

Title: Temperature gradient sensor based on a long-fiber Bragg grating and time-frequency analysis
Author: Ricchiuti, Amelia Lavinia Barrera Vilar, David Nonaka, Koji Sales Maicas, Salvador
UPV Unit: Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia
Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Issued date:
Abstract:
A photonic sensor based on a 10-cm-long fiber Bragg grating (FBG) is presented and experimentally validated that is dedicated to detect the presence and the position of a temperature gradient. The system is based on the ...[+]
Subjects: Fiber Bragg gratings , Fiber optics sensors , Temperature
Copyrigths: Reserva de todos los derechos
Source:
Optics Letters. (issn: 0146-9592 ) (eissn: 1539-4794 )
DOI: 10.1364/OL.39.005729
Publisher:
Optical Society of America
Publisher version: http://dx.doi.org/10.1364/OL.39.005729
Project ID:
FEDER UPVOV08-3E-008
FEDER UPVOV10-3E-492
Spanish MCINN TEC2011-29120-C05-05
Valencian Government ACOMP/2013/146
Research Excellency Award Program GVA PROMETEO 2013/012
Description: © [2014 Optical Society of America.]. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibited.
Thanks:
The authors wish to acknowledge the Infraestructura FEDER UPVOV08-3E-008, FEDER UPVOV10-3E-492, the Spanish MCINN through the project TEC2011-29120-C05-05, the Valencian Government through the Ayuda Complementaria ...[+]
Type: Artículo

References

Culshaw, B. (2004). Optical Fiber Sensor Technologies: Opportunities and—Perhaps—Pitfalls. Journal of Lightwave Technology, 22(1), 39-50. doi:10.1109/jlt.2003.822139

Kersey, A. D., Davis, M. A., Patrick, H. J., LeBlanc, M., Koo, K. P., Askins, C. G., … Friebele, E. J. (1997). Fiber grating sensors. Journal of Lightwave Technology, 15(8), 1442-1463. doi:10.1109/50.618377

Li, S. Y., Ngo, N. Q., Tjin, S. C., Shum, P., & Zhang, J. (2004). Thermally tunable narrow-bandpass filter based on a linearly chirped fiber Bragg grating. Optics Letters, 29(1), 29. doi:10.1364/ol.29.000029 [+]
Culshaw, B. (2004). Optical Fiber Sensor Technologies: Opportunities and—Perhaps—Pitfalls. Journal of Lightwave Technology, 22(1), 39-50. doi:10.1109/jlt.2003.822139

Kersey, A. D., Davis, M. A., Patrick, H. J., LeBlanc, M., Koo, K. P., Askins, C. G., … Friebele, E. J. (1997). Fiber grating sensors. Journal of Lightwave Technology, 15(8), 1442-1463. doi:10.1109/50.618377

Li, S. Y., Ngo, N. Q., Tjin, S. C., Shum, P., & Zhang, J. (2004). Thermally tunable narrow-bandpass filter based on a linearly chirped fiber Bragg grating. Optics Letters, 29(1), 29. doi:10.1364/ol.29.000029

Uno, H., Kojima, A., Shibano, A., & Mikami, O. (1999). <title>Optical wavelength switch using strain-controlled fiber Bragg gratings</title>. Optical Engineering for Sensing and Nanotechnology (ICOSN ’99). doi:10.1117/12.347816

Azana, J., & Muriel, M. A. (2001). Temporal self-imaging effects: theory and application for multiplying pulse repetition rates. IEEE Journal of Selected Topics in Quantum Electronics, 7(4), 728-744. doi:10.1109/2944.974245

Volanthen, M., Geiger, H., & Dakin, J. P. (1997). Distributed grating sensors using low-coherence reflectometry. Journal of Lightwave Technology, 15(11), 2076-2082. doi:10.1109/50.641525

Hotate, K., & Kajiwara, K. (2008). Proposal and experimental verification of Bragg wavelength distribution measurement within a long-length FBG by synthesis of optical coherence function. Optics Express, 16(11), 7881. doi:10.1364/oe.16.007881

Sancho, J., Chin, S., Barrera, D., Sales, S., & Thévenaz, L. (2013). Time-frequency analysis of long fiber Bragg gratings with low reflectivity. Optics Express, 21(6), 7171. doi:10.1364/oe.21.007171

Ricchiuti, A. L., Barrera, D., Sales, S., Thevenaz, L., & Capmany, J. (2013). Long fiber Bragg grating sensor interrogation using discrete-time microwave photonic filtering techniques. Optics Express, 21(23), 28175. doi:10.1364/oe.21.028175

Thévenaz, L., Chin, S., Sancho, J., & Sales, S. (2014). Novel technique for distributed fibre sensing based on faint long gratings (FLOGs). 23rd International Conference on Optical Fibre Sensors. doi:10.1117/12.2059668

Barnoski, M. K., Rourke, M. D., Jensen, S. M., & Melville, R. T. (1977). Optical time domain reflectometer. Applied Optics, 16(9), 2375. doi:10.1364/ao.16.002375

[-]

This item appears in the following Collection(s)

Show full item record