- -

Temperature gradient sensor based on a long-fiber Bragg grating and time-frequency analysis

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Temperature gradient sensor based on a long-fiber Bragg grating and time-frequency analysis

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ricchiuti, Amelia Lavinia es_ES
dc.contributor.author Barrera Vilar, David es_ES
dc.contributor.author Nonaka, Koji es_ES
dc.contributor.author Sales Maicas, Salvador es_ES
dc.date.accessioned 2015-11-04T12:40:07Z
dc.date.available 2015-11-04T12:40:07Z
dc.date.issued 2014-10-01
dc.identifier.issn 0146-9592
dc.identifier.uri http://hdl.handle.net/10251/57000
dc.description © [2014 Optical Society of America.]. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibited. es_ES
dc.description.abstract A photonic sensor based on a 10-cm-long fiber Bragg grating (FBG) is presented and experimentally validated that is dedicated to detect the presence and the position of a temperature gradient. The system is based on the measurement of the central frequency distribution of the grating based on time-frequency domain analysis. A short optical pulse, having duration much shorter than the transit time along the grating, is coupled into the FBG, and the back-reflected pulse is scanned by means of an oscilloscope. A spatial resolution of 1 mm, given by half the input pulse duration, is achieved. The proposed sensor is based on a simple configuration and presents a sensing range of 10 cm, which could be further enhanced by fabricating a longer grating. (C) 2014 Optical Society of America es_ES
dc.description.sponsorship The authors wish to acknowledge the Infraestructura FEDER UPVOV08-3E-008, FEDER UPVOV10-3E-492, the Spanish MCINN through the project TEC2011-29120-C05-05, the Valencian Government through the Ayuda Complementaria ACOMP/2013/146 and the financial support given by the Research Excellency Award Program GVA PROMETEO 2013/012. en_EN
dc.language Inglés es_ES
dc.publisher Optical Society of America es_ES
dc.relation.ispartof Optics Letters es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Fiber Bragg gratings es_ES
dc.subject Fiber optics sensors es_ES
dc.subject Temperature es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Temperature gradient sensor based on a long-fiber Bragg grating and time-frequency analysis es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1364/OL.39.005729
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//UPOV08-3E-008/ES/INSTRUMENTACION AVANZADA PARA COMUNICACIONES OPTICAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//UPOV10-3E-492/ES/Instrumentación para la caracterización de sistemas y componentes en comunicaciones ópticas avanzadas/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TEC2011-29120-C05-05/ES/APLICACIONES DE LA TECNOLOGIA NANOFOTONICA AL CAMPO DE LAS TELECOMUNICACIONES Y LOS SENSORES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACOMP%2F2013%2F146/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2013%2F012/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Ricchiuti, AL.; Barrera Vilar, D.; Nonaka, K.; Sales Maicas, S. (2014). Temperature gradient sensor based on a long-fiber Bragg grating and time-frequency analysis. Optics Letters. 39(19):5729-5731. https://doi.org/10.1364/OL.39.005729 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1364/OL.39.005729 es_ES
dc.description.upvformatpinicio 5729 es_ES
dc.description.upvformatpfin 5731 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 39 es_ES
dc.description.issue 19 es_ES
dc.relation.senia 271861 es_ES
dc.identifier.eissn 1539-4794
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Culshaw, B. (2004). Optical Fiber Sensor Technologies: Opportunities and—Perhaps—Pitfalls. Journal of Lightwave Technology, 22(1), 39-50. doi:10.1109/jlt.2003.822139 es_ES
dc.description.references Kersey, A. D., Davis, M. A., Patrick, H. J., LeBlanc, M., Koo, K. P., Askins, C. G., … Friebele, E. J. (1997). Fiber grating sensors. Journal of Lightwave Technology, 15(8), 1442-1463. doi:10.1109/50.618377 es_ES
dc.description.references Li, S. Y., Ngo, N. Q., Tjin, S. C., Shum, P., & Zhang, J. (2004). Thermally tunable narrow-bandpass filter based on a linearly chirped fiber Bragg grating. Optics Letters, 29(1), 29. doi:10.1364/ol.29.000029 es_ES
dc.description.references Uno, H., Kojima, A., Shibano, A., & Mikami, O. (1999). <title>Optical wavelength switch using strain-controlled fiber Bragg gratings</title>. Optical Engineering for Sensing and Nanotechnology (ICOSN ’99). doi:10.1117/12.347816 es_ES
dc.description.references Azana, J., & Muriel, M. A. (2001). Temporal self-imaging effects: theory and application for multiplying pulse repetition rates. IEEE Journal of Selected Topics in Quantum Electronics, 7(4), 728-744. doi:10.1109/2944.974245 es_ES
dc.description.references Volanthen, M., Geiger, H., & Dakin, J. P. (1997). Distributed grating sensors using low-coherence reflectometry. Journal of Lightwave Technology, 15(11), 2076-2082. doi:10.1109/50.641525 es_ES
dc.description.references Hotate, K., & Kajiwara, K. (2008). Proposal and experimental verification of Bragg wavelength distribution measurement within a long-length FBG by synthesis of optical coherence function. Optics Express, 16(11), 7881. doi:10.1364/oe.16.007881 es_ES
dc.description.references Sancho, J., Chin, S., Barrera, D., Sales, S., & Thévenaz, L. (2013). Time-frequency analysis of long fiber Bragg gratings with low reflectivity. Optics Express, 21(6), 7171. doi:10.1364/oe.21.007171 es_ES
dc.description.references Ricchiuti, A. L., Barrera, D., Sales, S., Thevenaz, L., & Capmany, J. (2013). Long fiber Bragg grating sensor interrogation using discrete-time microwave photonic filtering techniques. Optics Express, 21(23), 28175. doi:10.1364/oe.21.028175 es_ES
dc.description.references Thévenaz, L., Chin, S., Sancho, J., & Sales, S. (2014). Novel technique for distributed fibre sensing based on faint long gratings (FLOGs). 23rd International Conference on Optical Fibre Sensors. doi:10.1117/12.2059668 es_ES
dc.description.references Barnoski, M. K., Rourke, M. D., Jensen, S. M., & Melville, R. T. (1977). Optical time domain reflectometer. Applied Optics, 16(9), 2375. doi:10.1364/ao.16.002375 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem