Mostrar el registro sencillo del ítem
dc.contributor.author | García Meca, Carlos | es_ES |
dc.contributor.author | Ortuño Molinero, Rubén | es_ES |
dc.contributor.author | Martí Sendra, Javier | es_ES |
dc.contributor.author | Martínez Abietar, Alejandro José | es_ES |
dc.date.accessioned | 2015-11-09T08:13:12Z | |
dc.date.available | 2015-11-09T08:13:12Z | |
dc.date.issued | 2014-02-21 | |
dc.identifier.uri | http://hdl.handle.net/10251/57195 | |
dc.description.abstract | We present a method that enables the implementation of full three-dimensional (3D) transformation media with minimized anisotropy. It is based on a special kind of shape-preserving mapping and a subsequent optimization process. For sufficiently smooth transformations, the resulting anisotropy can be neglected, paving the way for practically realizable 3D devices. The method is independent of the considered wave phenomenon and can thus be applied to any field for which a transformational technique exists, such as acoustics or thermodynamics. Full 3D isotropy has an additional important implication for optical transformation media, as it eliminates the need for magnetic materials in many situations. To illustrate the potential of the method, we design 3D counterparts of transformation-based electromagnetic squeezers and bends. | es_ES |
dc.description.sponsorship | The authors acknowledge support from projects Consolider EMET (CSD2008-00066), TEC 2011-28664-C02-02 and GVA ACOMP/2013/013. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | IOP Publishing: Open Access Journals | es_ES |
dc.relation.ispartof | New Journal of Physics | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Metamaterials | es_ES |
dc.subject | Transformation optics | es_ES |
dc.subject | Quasi-conformal mappings | es_ES |
dc.subject | Cloaking | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | Full three-dimensional isotropic transformation media | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1088/1367-2630/16/2/023030 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CSD2008-00066/ES/Ingeniería de Metamateriales/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TEC2011-28664-C02-02/ES/APPLICATIONS OF METAMATERIALS IN THE OPTICAL RANGE/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//ACOMP%2F2013%2F013/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.description.bibliographicCitation | García Meca, C.; Ortuño Molinero, R.; Martí Sendra, J.; Martínez Abietar, AJ. (2014). Full three-dimensional isotropic transformation media. New Journal of Physics. 16. https://doi.org/10.1088/1367-2630/16/2/023030 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1088/1367-2630/16/2/023030 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 16 | es_ES |
dc.relation.senia | 268374 | es_ES |
dc.identifier.eissn | 1367-2630 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.description.references | Leonhardt, U. (2006). Optical Conformal Mapping. Science, 312(5781), 1777-1780. doi:10.1126/science.1126493 | es_ES |
dc.description.references | Pendry, J. B. (2006). Controlling Electromagnetic Fields. Science, 312(5781), 1780-1782. doi:10.1126/science.1125907 | es_ES |
dc.description.references | Schurig, D., Mock, J. J., Justice, B. J., Cummer, S. A., Pendry, J. B., Starr, A. F., & Smith, D. R. (2006). Metamaterial Electromagnetic Cloak at Microwave Frequencies. Science, 314(5801), 977-980. doi:10.1126/science.1133628 | es_ES |
dc.description.references | Greenleaf, A., Kurylev, Y., Lassas, M., & Uhlmann, G. (2007). Electromagnetic Wormholes and Virtual Magnetic Monopoles from Metamaterials. Physical Review Letters, 99(18). doi:10.1103/physrevlett.99.183901 | es_ES |
dc.description.references | Shalaev, V. M. (2008). PHYSICS: Transforming Light. Science, 322(5900), 384-386. doi:10.1126/science.1166079 | es_ES |
dc.description.references | Chen, H., Chan, C. T., & Sheng, P. (2010). Transformation optics and metamaterials. Nature Materials, 9(5), 387-396. doi:10.1038/nmat2743 | es_ES |
dc.description.references | Cummer, S. A., & Schurig, D. (2007). One path to acoustic cloaking. New Journal of Physics, 9(3), 45-45. doi:10.1088/1367-2630/9/3/045 | es_ES |
dc.description.references | Chen, H., & Chan, C. T. (2007). Acoustic cloaking in three dimensions using acoustic metamaterials. Applied Physics Letters, 91(18), 183518. doi:10.1063/1.2803315 | es_ES |
dc.description.references | Norris, A. N. (2009). Acoustic metafluids. The Journal of the Acoustical Society of America, 125(2), 839-849. doi:10.1121/1.3050288 | es_ES |
dc.description.references | García-Meca, C., Carloni, S., Barceló, C., Jannes, G., Sánchez-Dehesa, J., & Martínez, A. (2013). Analogue Transformations in Physics and their Application to Acoustics. Scientific Reports, 3(1). doi:10.1038/srep02009 | es_ES |
dc.description.references | Norris, A. N., & Shuvalov, A. L. (2011). Elastic cloaking theory. Wave Motion, 48(6), 525-538. doi:10.1016/j.wavemoti.2011.03.002 | es_ES |
dc.description.references | Zhang, S., Genov, D. A., Sun, C., & Zhang, X. (2008). Cloaking of Matter Waves. Physical Review Letters, 100(12). doi:10.1103/physrevlett.100.123002 | es_ES |
dc.description.references | Guenneau, S., Amra, C., & Veynante, D. (2012). Transformation thermodynamics: cloaking and concentrating heat flux. Optics Express, 20(7), 8207. doi:10.1364/oe.20.008207 | es_ES |
dc.description.references | Landy, N. I., Kundtz, N., & Smith, D. R. (2010). Designing Three-Dimensional Transformation Optical Media Using Quasiconformal Coordinate Transformations. Physical Review Letters, 105(19). doi:10.1103/physrevlett.105.193902 | es_ES |
dc.description.references | Urzhumov, Y., Landy, N., & Smith, D. R. (2012). Isotropic-medium three-dimensional cloaks for acoustic and electromagnetic waves. Journal of Applied Physics, 111(5), 053105. doi:10.1063/1.3691242 | es_ES |
dc.description.references | Danner, A. J., Tyc, T., & Leonhardt, U. (2011). Controlling birefringence in dielectrics. Nature Photonics, 5(6), 357-359. doi:10.1038/nphoton.2011.53 | es_ES |
dc.description.references | Li, J., & Pendry, J. B. (2008). Hiding under the Carpet: A New Strategy for Cloaking. Physical Review Letters, 101(20). doi:10.1103/physrevlett.101.203901 | es_ES |
dc.description.references | Chang, Z., Zhou, X., Hu, J., & Hu, G. (2010). Design method for quasi-isotropic transformation materials based on inverse Laplace’s equation with sliding boundaries. Optics Express, 18(6), 6089. doi:10.1364/oe.18.006089 | es_ES |
dc.description.references | Chen, H., & Zheng, B. (2012). Broadband polygonal invisibility cloak for visible light. Scientific Reports, 2(1). doi:10.1038/srep00255 | es_ES |
dc.description.references | Landy, N., & Smith, D. R. (2012). A full-parameter unidirectional metamaterial cloak for microwaves. Nature Materials, 12(1), 25-28. doi:10.1038/nmat3476 | es_ES |
dc.description.references | Rahm, M., Schurig, D., Roberts, D. A., Cummer, S. A., Smith, D. R., & Pendry, J. B. (2008). Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations. Photonics and Nanostructures - Fundamentals and Applications, 6(1), 87-95. doi:10.1016/j.photonics.2007.07.013 | es_ES |
dc.description.references | Rahm, M., Roberts, D. A., Pendry, J. B., & Smith, D. R. (2008). Transformation-optical design of adaptive beam bends and beam expanders. Optics Express, 16(15), 11555. doi:10.1364/oe.16.011555 | es_ES |
dc.description.references | Schmiele, M., Varma, V. S., Rockstuhl, C., & Lederer, F. (2010). Designing optical elements from isotropic materials by using transformation optics. Physical Review A, 81(3). doi:10.1103/physreva.81.033837 | es_ES |
dc.description.references | García-Meca, C., Tung, M. M., Galán, J. V., Ortuño, R., Rodríguez-Fortuño, F. J., Martí, J., & Martínez, A. (2011). Squeezing and expanding light without reflections via transformation optics. Optics Express, 19(4), 3562. doi:10.1364/oe.19.003562 | es_ES |
dc.description.references | Liu, D., Gabrielli, L. H., Lipson, M., & Johnson, S. G. (2013). Transformation inverse design. Optics Express, 21(12), 14223. doi:10.1364/oe.21.014223 | es_ES |
dc.description.references | (2008). ACM Transactions on Graphics, 27(3). doi:10.1145/1360612 | es_ES |
dc.description.references | Lipman, Y., & Levin, D. (2010). Derivation and Analysis of Green Coordinates. Computational Methods and Function Theory, 10(1), 167-188. doi:10.1007/bf03321761 | es_ES |
dc.description.references | Nelder, J. A., & Mead, R. (1965). A Simplex Method for Function Minimization. The Computer Journal, 7(4), 308-313. doi:10.1093/comjnl/7.4.308 | es_ES |
dc.description.references | Paillé, G.-P., & Poulin, P. (2012). As-conformal-as-possible discrete volumetric mapping. Computers & Graphics, 36(5), 427-433. doi:10.1016/j.cag.2012.03.014 | es_ES |