- -

A joint experimental/theoretical study of the ultrafast excited state deactivation of deoxyadenosine and 9-methyladenine in water and acetonitrile

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

A joint experimental/theoretical study of the ultrafast excited state deactivation of deoxyadenosine and 9-methyladenine in water and acetonitrile

Show full item record

Gustavsson, T.; Sarkar, N.; Vayá Pérez, I.; Jiménez Molero, MC.; Markovitsi, D.; Improta, R. (2013). A joint experimental/theoretical study of the ultrafast excited state deactivation of deoxyadenosine and 9-methyladenine in water and acetonitrile. Photochemical & Photobiological Sciences Photochemical and Photobiological Sciences. 12(8):1375-1386. https://doi.org/10.1039/c3pp50060h

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/57286

Files in this item

Item Metadata

Title: A joint experimental/theoretical study of the ultrafast excited state deactivation of deoxyadenosine and 9-methyladenine in water and acetonitrile
Author: Gustavsson, Thomas Sarkar, Nilmoni Vayá Pérez, Ignacio Jiménez Molero, María Consuelo Markovitsi, Dimitra Improta, Roberto
UPV Unit: Universitat Politècnica de València. Departamento de Química - Departament de Química
Issued date:
Abstract:
The excited states of deoxyadenosine (dA) and 9-methyladenine (9Me-Ade) were studied in water and acetonitrile by a combination of steady-state and time-resolved spectroscopy and quantum chemical calculations. Femtosecond ...[+]
Subjects: Fluorescence up-conversion , Time-resolved photoelectron , Jet-cooled adenine , Electronic relaxation dynamics , Double-resonance spectroscopy , Nucleic-acid bases , Isolated dna bases , A-t dna , Aqueous-solution , Radiationless decay
Copyrigths: Cerrado
Source:
Photochemical & Photobiological Sciences Photochemical and Photobiological Sciences. (issn: 1474-905X ) (eissn: 1474-9092 )
DOI: 10.1039/c3pp50060h
Publisher:
Royal Society of Chemistry
Project ID:
MIUR
French Agency for Research ANR-10-BLAN-0809-01
info:eu-repo/grantAgreement/MICINN//JCI-2011-09926/ES/JCI-2011-09926/
Thanks:
R.I. thanks MIUR (FIRB 2008 Futuro in Ricerca and PRIN 2010-2011) for financial support. The French Agency for Research (ANR-10-BLAN-0809-01, "DNAExciton") is acknowledged for financial support. Financial support from the ...[+]
Type: Artículo

References

Crespo-Hernández, C. E., Cohen, B., Hare, P. M., & Kohler, B. (2004). Ultrafast Excited-State Dynamics in Nucleic Acids. Chemical Reviews, 104(4), 1977-2020. doi:10.1021/cr0206770

Crespo-Hernández, C. E., Cohen, B., & Kohler, B. (2005). Base stacking controls excited-state dynamics in A·T DNA. Nature, 436(7054), 1141-1144. doi:10.1038/nature03933

Middleton, C. T., de La Harpe, K., Su, C., Law, Y. K., Crespo-Hernández, C. E., & Kohler, B. (2009). DNA Excited-State Dynamics: From Single Bases to the Double Helix. Annual Review of Physical Chemistry, 60(1), 217-239. doi:10.1146/annurev.physchem.59.032607.093719 [+]
Crespo-Hernández, C. E., Cohen, B., Hare, P. M., & Kohler, B. (2004). Ultrafast Excited-State Dynamics in Nucleic Acids. Chemical Reviews, 104(4), 1977-2020. doi:10.1021/cr0206770

Crespo-Hernández, C. E., Cohen, B., & Kohler, B. (2005). Base stacking controls excited-state dynamics in A·T DNA. Nature, 436(7054), 1141-1144. doi:10.1038/nature03933

Middleton, C. T., de La Harpe, K., Su, C., Law, Y. K., Crespo-Hernández, C. E., & Kohler, B. (2009). DNA Excited-State Dynamics: From Single Bases to the Double Helix. Annual Review of Physical Chemistry, 60(1), 217-239. doi:10.1146/annurev.physchem.59.032607.093719

Gustavsson, T., Improta, R., & Markovitsi, D. (2010). DNA/RNA: Building Blocks of Life Under UV Irradiation. The Journal of Physical Chemistry Letters, 1(13), 2025-2030. doi:10.1021/jz1004973

Markovitsi, D., Gustavsson, T., & Vayá, I. (2010). Fluorescence of DNA Duplexes: From Model Helices to Natural DNA. The Journal of Physical Chemistry Letters, 1(22), 3271-3276. doi:10.1021/jz101122t

Shukla, M. K., & Leszczynski, J. (2007). Electronic Spectra, Excited State Structures and Interactions of Nucleic Acid Bases and Base Assemblies: A Review. Journal of Biomolecular Structure and Dynamics, 25(1), 93-118. doi:10.1080/07391102.2007.10507159

Schwalb, N. K., & Temps, F. (2008). Base Sequence and Higher-Order Structure Induce the Complex Excited-State Dynamics in DNA. Science, 322(5899), 243-245. doi:10.1126/science.1161651

Serrano-Andrés, L., & Merchán, M. (2009). Are the five natural DNA/RNA base monomers a good choice from natural selection? Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 10(1), 21-32. doi:10.1016/j.jphotochemrev.2008.12.001

Markovitsi, D., Gustavsson, T., & Banyasz, A. (2010). Absorption of UV radiation by DNA: Spatial and temporal features. Mutation Research/Reviews in Mutation Research, 704(1-3), 21-28. doi:10.1016/j.mrrev.2009.11.003

Bouvier, B., Gustavsson, T., Markovitsi, D., & Millié, P. (2002). Dipolar coupling between electronic transitions of the DNA bases and its relevance to exciton states in double helices. Chemical Physics, 275(1-3), 75-92. doi:10.1016/s0301-0104(01)00523-7

Bittner, E. R. (2007). Frenkel exciton model of ultrafast excited state dynamics in AT DNA double helices. Journal of Photochemistry and Photobiology A: Chemistry, 190(2-3), 328-334. doi:10.1016/j.jphotochem.2006.12.007

Buchvarov, I., Wang, Q., Raytchev, M., Trifonov, A., & Fiebig, T. (2007). Electronic energy delocalization and dissipation in single- and double-stranded DNA. Proceedings of the National Academy of Sciences, 104(12), 4794-4797. doi:10.1073/pnas.0606757104

Starikov, E. B., Cuniberti, G., & Tanaka, S. (2009). Conformation Dependence of DNA Exciton Parentage. The Journal of Physical Chemistry B, 113(30), 10428-10435. doi:10.1021/jp9035869

Lange, A. W., & Herbert, J. M. (2009). Both Intra- and Interstrand Charge-Transfer Excited States in Aqueous B-DNA Are Present at Energies Comparable To, or Just Above, the1ππ* Excitonic Bright States. Journal of the American Chemical Society, 131(11), 3913-3922. doi:10.1021/ja808998q

Santoro, F., Barone, V., & Improta, R. (2009). Excited States Decay of the A−T DNA: A PCM/TD-DFT Study in Aqueous Solution of the (9-Methyl-adenine)2·(1-methyl-thymine)2Stacked Tetramer. Journal of the American Chemical Society, 131(42), 15232-15245. doi:10.1021/ja904777h

Lu, Y., Lan, Z., & Thiel, W. (2011). Hydrogen Bonding Regulates the Monomeric Nonradiative Decay of Adenine in DNA Strands. Angewandte Chemie International Edition, 50(30), 6864-6867. doi:10.1002/anie.201008146

Clark, L. B., Peschel, G. G., & Tinoco, I. (1965). Vapor Spectra and Heats of Vaporization of Some Purine and Pyrimidine Bases1. The Journal of Physical Chemistry, 69(10), 3615-3618. doi:10.1021/j100894a063

Kim, N. J., Jeong, G., Kim, Y. S., Sung, J., Keun Kim, S., & Park, Y. D. (2000). Resonant two-photon ionization and laser induced fluorescence spectroscopy of jet-cooled adenine. The Journal of Chemical Physics, 113(22), 10051-10055. doi:10.1063/1.1322072

Lührs, D. C., Viallon, J., & Fischer, I. (2001). Excited state spectroscopy and dynamics of isolated adenine and 9-methyladenine. Physical Chemistry Chemical Physics, 3(10), 1827-1831. doi:10.1039/b101191j

Nir, E., Kleinermanns, K., Grace, L., & de Vries, M. S. (2001). On the Photochemistry of Purine Nucleobases. The Journal of Physical Chemistry A, 105(21), 5106-5110. doi:10.1021/jp0030645

Plützer, C., Nir, E., de Vries, M. S., & Kleinermanns, K. (2001). IR–UV double-resonance spectroscopy of the nucleobase adenine. Physical Chemistry Chemical Physics, 3(24), 5466-5469. doi:10.1039/b107997b

Nir, E., Plützer, C., Kleinermanns, K., & de Vries, M. (2002). Properties of isolated DNA bases, base pairs and nucleosides examined by laser spectroscopy. The European Physical Journal D, 20(3), 317-329. doi:10.1140/epjd/e2002-00167-2

Plützer, C., & Kleinermanns, K. (2002). Tautomers and electronic states of jet-cooled adenine investigated by double resonance spectroscopy. Phys. Chem. Chem. Phys., 4(20), 4877-4882. doi:10.1039/b204595h

Joon Kim, N., Kang, H., Dong Park, Y., & Keun Kim, S. (2004). Dispersed fluorescence spectroscopy of jet-cooled adenine. Physical Chemistry Chemical Physics, 6(10), 2802. doi:10.1039/b313467a

Perun, S., Sobolewski, A. L., & Domcke, W. (2005). Ab Initio Studies on the Radiationless Decay Mechanisms of the Lowest Excited Singlet States of 9H-Adenine. Journal of the American Chemical Society, 127(17), 6257-6265. doi:10.1021/ja044321c

Serrano-Andres, L., Merchan, M., & Borin, A. C. (2006). Adenine and 2-aminopurine: Paradigms of modern theoretical photochemistry. Proceedings of the National Academy of Sciences, 103(23), 8691-8696. doi:10.1073/pnas.0602991103

Serrano-Andrés, L., Merchán, M., & Borin, A. C. (2006). A Three-State Model for the Photophysics of Adenine. Chemistry - A European Journal, 12(25), 6559-6571. doi:10.1002/chem.200501515

Conti, I., Garavelli, M., & Orlandi, G. (2009). Deciphering Low Energy Deactivation Channels in Adenine. Journal of the American Chemical Society, 131(44), 16108-16118. doi:10.1021/ja902311y

Ullrich, S., Schultz, T., Zgierski, M. Z., & Stolow, A. (2004). Direct Observation of Electronic Relaxation Dynamics in Adenine via Time-Resolved Photoelectron Spectroscopy. Journal of the American Chemical Society, 126(8), 2262-2263. doi:10.1021/ja030532q

Ullrich, S., Schultz, T., Zgierski, M. Z., & Stolow, A. (2004). Electronic relaxation dynamics in DNA and RNA bases studied by time-resolved photoelectron spectroscopy. Physical Chemistry Chemical Physics, 6(10), 2796. doi:10.1039/b316324e

Canuel, C., Mons, M., Piuzzi, F., Tardivel, B., Dimicoli, I., & Elhanine, M. (2005). Excited states dynamics of DNA and RNA bases: Characterization of a stepwise deactivation pathway in the gas phase. The Journal of Chemical Physics, 122(7), 074316. doi:10.1063/1.1850469

Canuel, C., Elhanine, M., Mons, M., Piuzzi, F., Tardivel, B., & Dimicoli, I. (2006). Time-resolved photoelectron and photoion fragmentation spectroscopy study of 9-methyladenine and its hydrates: a contribution to the understanding of the ultrafast radiationless decay of excited DNA bases. Physical Chemistry Chemical Physics, 8(34), 3978. doi:10.1039/b606437j

Ritze, H.-H., Lippert, H., Samoylova, E., Smith, V. R., Hertel, I. V., Radloff, W., & Schultz, T. (2005). Relevance of πσ* states in the photoinduced processes of adenine, adenine dimer, and adenine–water complexes. The Journal of Chemical Physics, 122(22), 224320. doi:10.1063/1.1914763

Bisgaard, C. Z., Satzger, H., Ullrich, S., & Stolow, A. (2009). Excited-State Dynamics of Isolated DNA Bases: A Case Study of Adenine. ChemPhysChem, 10(1), 101-110. doi:10.1002/cphc.200800516

Barbatti, M., & Lischka, H. (2008). Nonadiabatic Deactivation of 9H-Adenine: A Comprehensive Picture Based on Mixed Quantum−Classical Dynamics. Journal of the American Chemical Society, 130(21), 6831-6839. doi:10.1021/ja800589p

Fabiano, E., & Thiel, W. (2008). Nonradiative Deexcitation Dynamics of 9H-Adenine: An OM2 Surface Hopping Study. The Journal of Physical Chemistry A, 112(30), 6859-6863. doi:10.1021/jp8033402

Lei, Y., Yuan, S., Dou, Y., Wang, Y., & Wen, Z. (2008). Detailed Dynamics of the Nonradiative Deactivation of Adenine: A Semiclassical Dynamics Study. The Journal of Physical Chemistry A, 112(37), 8497-8504. doi:10.1021/jp802483b

Mitrić, R., Werner, U., Wohlgemuth, M., Seifert, G., & Bonačić-Koutecký, V. (2009). Nonadiabatic Dynamics within Time-Dependent Density Functional Tight Binding Method†. The Journal of Physical Chemistry A, 113(45), 12700-12705. doi:10.1021/jp905600w

Barbatti, M., Aquino, A. J. A., Szymczak, J. J., Nachtigallova, D., Hobza, P., & Lischka, H. (2010). Relaxation mechanisms of UV-photoexcited DNA and RNA nucleobases. Proceedings of the National Academy of Sciences, 107(50), 21453-21458. doi:10.1073/pnas.1014982107

Alexandrova, A. N., Tully, J. C., & Granucci, G. (2010). Photochemistry of DNA Fragments via Semiclassical Nonadiabatic Dynamics. The Journal of Physical Chemistry B, 114(37), 12116-12128. doi:10.1021/jp103322c

Barbatti, M., Lan, Z., Crespo-Otero, R., Szymczak, J. J., Lischka, H., & Thiel, W. (2012). Critical appraisal of excited state nonadiabatic dynamics simulations of 9H-adenine. The Journal of Chemical Physics, 137(22), 22A503. doi:10.1063/1.4731649

Voet, D., Gratzer, W. B., Cox, R. A., & Doty, P. (1963). Absorption spectra of nucleotides, polynucleotides, and nucleic acids in the far ultraviolet. Biopolymers, 1(3), 193-208. doi:10.1002/bip.360010302

Stewart, R. F., & Davidson, N. (1963). Polarized Absorption Spectra of Purines and Pyrimidines. The Journal of Chemical Physics, 39(2), 255-266. doi:10.1063/1.1734238

Callis, P. R. (1983). Electronic States and Luminescence of Nucleic Acid Systems. Annual Review of Physical Chemistry, 34(1), 329-357. doi:10.1146/annurev.pc.34.100183.001553

Voelter, W., Records, R., Bunnenberg, E., & Djerassi, C. (1968). Magnetic circular dichroism studies. VI. Investigation of some purines, pyrimidines, and nucleosides. Journal of the American Chemical Society, 90(22), 6163-6170. doi:10.1021/ja01024a039

Holmén, A., Broo, A., Albinsson, B., & Nordén, B. (1997). Assignment of Electronic Transition Moment Directions of Adenine from Linear Dichroism Measurements. Journal of the American Chemical Society, 119(50), 12240-12250. doi:10.1021/ja9710262

Hare, P. M., Crespo-Hernandez, C. E., & Kohler, B. (2006). Internal conversion to the electronic ground state occurs via two distinct pathways for pyrimidine bases in aqueous solution. Proceedings of the National Academy of Sciences, 104(2), 435-440. doi:10.1073/pnas.0608055104

Yamazaki, S., & Kato, S. (2007). Solvent Effect on Conical Intersections in Excited-State 9H-Adenine:  Radiationless Decay Mechanism in Polar Solvent. Journal of the American Chemical Society, 129(10), 2901-2909. doi:10.1021/ja0669169

Ludwig, V., da Costa, Z. M., do Amaral, M. S., Borin, A. C., Canuto, S., & Serrano-Andrés, L. (2010). Photophysics and photostability of adenine in aqueous solution: A theoretical study. Chemical Physics Letters, 492(1-3), 164-169. doi:10.1016/j.cplett.2010.04.048

Mennucci, B., Toniolo, A., & Tomasi, J. (2001). Theoretical Study of the Photophysics of Adenine in Solution:  Tautomerism, Deactivation Mechanisms, and Comparison with the 2-Aminopurine Fluorescent Isomer. The Journal of Physical Chemistry A, 105(19), 4749-4757. doi:10.1021/jp0045843

Improta, R., & Barone, V. (2008). The excited states of adenine and thymine nucleoside and nucleotide in aqueous solution: a comparative study by time-dependent DFT calculations. Theoretical Chemistry Accounts, 120(4-6), 491-497. doi:10.1007/s00214-007-0404-5

Lan, Z., Lu, Y., Fabiano, E., & Thiel, W. (2011). QM/MM Nonadiabatic Decay Dynamics of 9H-Adenine in Aqueous Solution. ChemPhysChem, 12(10), 1989-1998. doi:10.1002/cphc.201001054

Conti, I., Altoè, P., Stenta, M., Garavelli, M., & Orlandi, G. (2010). Adenine deactivation in DNA resolved at the CASPT2//CASSCF/AMBER level. Physical Chemistry Chemical Physics, 12(19), 5016. doi:10.1039/b926608a

Pecourt, J.-M. L., Peon, J., & Kohler, B. (2000). Ultrafast Internal Conversion of Electronically Excited RNA and DNA Nucleosides in Water. Journal of the American Chemical Society, 122(38), 9348-9349. doi:10.1021/ja0021520

Peon, J., & Zewail, A. H. (2001). DNA/RNA nucleotides and nucleosides: direct measurement of excited-state lifetimes by femtosecond fluorescence up-conversion. Chemical Physics Letters, 348(3-4), 255-262. doi:10.1016/s0009-2614(01)01128-9

Gustavsson, T., Sharonov, A., Onidas, D., & Markovitsi, D. (2002). Adenine, deoxyadenosine and deoxyadenosine 5′-monophosphate studied by femtosecond fluorescence upconversion spectroscopy. Chemical Physics Letters, 356(1-2), 49-54. doi:10.1016/s0009-2614(02)00290-7

Onidas, D., Markovitsi, D., Marguet, S., Sharonov, A., & Gustavsson, T. (2002). Fluorescence Properties of DNA Nucleosides and Nucleotides:  A Refined Steady-State and Femtosecond Investigation. The Journal of Physical Chemistry B, 106(43), 11367-11374. doi:10.1021/jp026063g

Kwok, W.-M., Ma, C., & Phillips, D. L. (2006). Femtosecond Time- and Wavelength-Resolved Fluorescence and Absorption Spectroscopic Study of the Excited States of Adenosine and an Adenine Oligomer. Journal of the American Chemical Society, 128(36), 11894-11905. doi:10.1021/ja0622002

Pancur, T., Schwalb, N. K., Renth, F., & Temps, F. (2005). Femtosecond fluorescence up-conversion spectroscopy of adenine and adenosine: experimental evidence for the πσ* state? Chemical Physics, 313(1-3), 199-212. doi:10.1016/j.chemphys.2004.12.019

Cohen, B., Hare, P. M., & Kohler, B. (2003). Ultrafast Excited-State Dynamics of Adenine and Monomethylated Adenines in Solution:  Implications for the Nonradiative Decay Mechanism. Journal of the American Chemical Society, 125(44), 13594-13601. doi:10.1021/ja035628z

Gustavsson, T., Bányász, Á., Lazzarotto, E., Markovitsi, D., Scalmani, G., Frisch, M. J., … Improta, R. (2006). Singlet Excited-State Behavior of Uracil and Thymine in Aqueous Solution:  A Combined Experimental and Computational Study of 11 Uracil Derivatives. Journal of the American Chemical Society, 128(2), 607-619. doi:10.1021/ja056181s

Gustavsson, T., Sarkar, N., Lazzarotto, E., Markovitsi, D., Barone, V., & Improta, R. (2006). Solvent Effect on the Singlet Excited-state Dynamics of 5-Fluorouracil in Acetonitrile as Compared with Water. The Journal of Physical Chemistry B, 110(26), 12843-12847. doi:10.1021/jp062266j

Gustavsson, T., Sarkar, N., Lazzarotto, E., Markovitsi, D., & Improta, R. (2006). Singlet excited state dynamics of uracil and thymine derivatives: A femtosecond fluorescence upconversion study in acetonitrile. Chemical Physics Letters, 429(4-6), 551-557. doi:10.1016/j.cplett.2006.08.058

Santoro, F., Barone, V., Gustavsson, T., & Improta, R. (2006). Solvent Effect on the Singlet Excited-State Lifetimes of Nucleic Acid Bases:  A Computational Study of 5-Fluorouracil and Uracil in Acetonitrile and Water. Journal of the American Chemical Society, 128(50), 16312-16322. doi:10.1021/ja0657861

Gustavsson, T., Bányász, Á., Sarkar, N., Markovitsi, D., & Improta, R. (2008). Assessing solvent effects on the singlet excited state lifetime of uracil derivatives: A femtosecond fluorescence upconversion study in alcohols and D2O. Chemical Physics, 350(1-3), 186-192. doi:10.1016/j.chemphys.2008.02.032

Gustavsson, T., Sharonov, A., & Markovitsi, D. (2002). Thymine, thymidine and thymidine 5′-monophosphate studied by femtosecond fluorescence upconversion spectroscopy. Chemical Physics Letters, 351(3-4), 195-200. doi:10.1016/s0009-2614(01)01375-6

Adamo, C., & Barone, V. (1999). Toward reliable density functional methods without adjustable parameters: The PBE0 model. The Journal of Chemical Physics, 110(13), 6158-6170. doi:10.1063/1.478522

Zhao, Y., Schultz, N. E., & Truhlar, D. G. (2006). Design of Density Functionals by Combining the Method of Constraint Satisfaction with Parametrization for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions. Journal of Chemical Theory and Computation, 2(2), 364-382. doi:10.1021/ct0502763

Yanai, T., Tew, D. P., & Handy, N. C. (2004). A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chemical Physics Letters, 393(1-3), 51-57. doi:10.1016/j.cplett.2004.06.011

Jacquemin, D., Perpète, E. A., Ciofini, I., & Adamo, C. (2009). Accurate Simulation of Optical Properties in Dyes. Accounts of Chemical Research, 42(2), 326-334. doi:10.1021/ar800163d

Bányász, A., Karpati, S., Mercier, Y., Reguero, M., Gustavsson, T., Markovitsi, D., & Improta, R. (2010). The Peculiar Spectral Properties of Amino-Substituted Uracils: A Combined Theoretical and Experimental Study. The Journal of Physical Chemistry B, 114(39), 12708-12719. doi:10.1021/jp105267q

Santoro, F., Barone, V., & Improta, R. (2007). Influence of base stacking on excited-state behavior of polyadenine in water, based on time-dependent density functional calculations. Proceedings of the National Academy of Sciences, 104(24), 9931-9936. doi:10.1073/pnas.0703298104

Karunakaran, V., Kleinermanns, K., Improta, R., & Kovalenko, S. A. (2009). Photoinduced Dynamics of Guanosine Monophosphate in Water from Broad-Band Transient Absorption Spectroscopy and Quantum-Chemical Calculations. Journal of the American Chemical Society, 131(16), 5839-5850. doi:10.1021/ja810092k

Improta, R. (2008). The excited states of π-stacked 9-methyladenine oligomers: a TD-DFT study in aqueous solution. Physical Chemistry Chemical Physics, 10(19), 2656. doi:10.1039/b718562f

Santoro, F., Barone, V., & Improta, R. (2008). Absorption Spectrum of A-T DNA Unraveled by Quantum Mechanical Calculations in Solution on the (dA)2⋅(dT)2Tetramer. ChemPhysChem, 9(17), 2531-2537. doi:10.1002/cphc.200800617

Improta, R., & Barone, V. (2011). Interplay between «Neutral» and «Charge-Transfer» Excimers Rules the Excited State Decay in Adenine-Rich Polynucleotides. Angewandte Chemie International Edition, 50(50), 12016-12019. doi:10.1002/anie.201104382

Banyasz, A., Gustavsson, T., Onidas, D., Changenet-Barret, P., Markovitsi, D., & Improta, R. (2013). Multi-Pathway Excited State Relaxation of Adenine Oligomers in Aqueous Solution: A Joint Theoretical and Experimental Study. Chemistry - A European Journal, 19(11), 3762-3774. doi:10.1002/chem.201202741

Dargiewicz, M., Biczysko, M., Improta, R., & Barone, V. (2012). Solvent effects on electron-driven proton-transfer processes: adenine–thymine base pairs. Physical Chemistry Chemical Physics, 14(25), 8981. doi:10.1039/c2cp23890j

Biemann, L., Kovalenko, S. A., Kleinermanns, K., Mahrwald, R., Markert, M., & Improta, R. (2011). Excited State Proton Transfer Is Not Involved in the Ultrafast Deactivation of Guanine–Cytosine Pair in Solution. Journal of the American Chemical Society, 133(49), 19664-19667. doi:10.1021/ja2089734

Tomasi, J., Mennucci, B., & Cammi, R. (2005). Quantum Mechanical Continuum Solvation Models. Chemical Reviews, 105(8), 2999-3094. doi:10.1021/cr9904009

Scalmani, G., Frisch, M. J., Mennucci, B., Tomasi, J., Cammi, R., & Barone, V. (2006). Geometries and properties of excited states in the gas phase and in solution: Theory and application of a time-dependent density functional theory polarizable continuum model. The Journal of Chemical Physics, 124(9), 094107. doi:10.1063/1.2173258

Improta, R., Barone, V., Scalmani, G., & Frisch, M. J. (2006). A state-specific polarizable continuum model time dependent density functional theory method for excited state calculations in solution. The Journal of Chemical Physics, 125(5), 054103. doi:10.1063/1.2222364

Improta, R., Scalmani, G., Frisch, M. J., & Barone, V. (2007). Toward effective and reliable fluorescence energies in solution by a new state specific polarizable continuum model time dependent density functional theory approach. The Journal of Chemical Physics, 127(7), 074504. doi:10.1063/1.2757168

Miannay, F.-A., Gustavsson, T., Banyasz, A., & Markovitsi, D. (2010). Excited-State Dynamics of dGMP Measured by Steady-State and Femtosecond Fluorescence Spectroscopy†. The Journal of Physical Chemistry A, 114(9), 3256-3263. doi:10.1021/jp909410b

Avila Ferrer, F. J., Cerezo, J., Stendardo, E., Improta, R., & Santoro, F. (2013). Insights for an Accurate Comparison of Computational Data to Experimental Absorption and Emission Spectra: Beyond the Vertical Transition Approximation. Journal of Chemical Theory and Computation, 9(4), 2072-2082. doi:10.1021/ct301107m

Cremer, D., & Pople, J. A. (1975). General definition of ring puckering coordinates. Journal of the American Chemical Society, 97(6), 1354-1358. doi:10.1021/ja00839a011

Cohen, B., Crespo-Hernández, C. E., & Kohler, B. (2004). Strickler–Berg analysis of excited singlet state dynamics in DNA and RNA nucleosides. Faraday Discuss., 127, 137-147. doi:10.1039/b316939a

Improta, R., Barone, V., Lami, A., & Santoro, F. (2009). Quantum Dynamics of the Ultrafast ππ*/nπ* Population Transfer in Uracil and 5-Fluoro-Uracil in Water and Acetonitrile. The Journal of Physical Chemistry B, 113(43), 14491-14503. doi:10.1021/jp906524p

Mercier, Y., Santoro, F., Reguero, M., & Improta, R. (2008). The Decay from the Dark nπ* Excited State in Uracil: An Integrated CASPT2/CASSCF and PCM/TD-DFT Study in the Gas Phase and in Water. The Journal of Physical Chemistry B, 112(35), 10769-10772. doi:10.1021/jp804785p

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record