- -

A joint experimental/theoretical study of the ultrafast excited state deactivation of deoxyadenosine and 9-methyladenine in water and acetonitrile

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A joint experimental/theoretical study of the ultrafast excited state deactivation of deoxyadenosine and 9-methyladenine in water and acetonitrile

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gustavsson, Thomas es_ES
dc.contributor.author Sarkar, Nilmoni es_ES
dc.contributor.author Vayá Pérez, Ignacio es_ES
dc.contributor.author Jiménez Molero, María Consuelo es_ES
dc.contributor.author Markovitsi, Dimitra es_ES
dc.contributor.author Improta, Roberto es_ES
dc.date.accessioned 2015-11-10T13:02:45Z
dc.date.available 2015-11-10T13:02:45Z
dc.date.issued 2013
dc.identifier.issn 1474-905X
dc.identifier.uri http://hdl.handle.net/10251/57286
dc.description.abstract The excited states of deoxyadenosine (dA) and 9-methyladenine (9Me-Ade) were studied in water and acetonitrile by a combination of steady-state and time-resolved spectroscopy and quantum chemical calculations. Femtosecond fluorescence upconversion experiments show that the decays of dA and 9Me-Ade after excitation at 267 nm are very similar, confirming that 9Me-Ade is a valid model for the calculations. The fluorescence decays can be described by an ultrafast component (<100 fs) and a slower one (≈ 300–500 fs); they are slightly slower in acetonitrile than in water. Time-dependent DFT calculations on 9Me-Ade, using PBE0 and M052X functionals and including both bulk and specific solvent effects, provide absorption and emission spectra in good agreement with experiments, giving a comprehensive description of the decay mechanism. It is shown that, in the Franck–Condon region, the lowest in energy state is the optically bright La state, with the Lb state situated about 2000 cm−1 higher. Both states are populated when excited at 267 nm, but the Lb state undergoes an ultrafast Lb → La decay, too fast for our time-resolution (≈ 80 fs). This is confirmed by the experimentally observed fluorescence anisotropies, attaining values lower than 0.4 already at time zero. Consequently, the ensuing excited state relaxation mechanism can be described as the evolution along an almost barrierless path from the Franck–Condon region of the La potential energy surface towards a conical intersection with the ground state. This internal conversion mechanism proceeds without any significant involvement of any nearlying nπ* state. es_ES
dc.description.sponsorship R.I. thanks MIUR (FIRB 2008 Futuro in Ricerca and PRIN 2010-2011) for financial support. The French Agency for Research (ANR-10-BLAN-0809-01, "DNAExciton") is acknowledged for financial support. Financial support from the Spanish Government (JCI-2011-09926 and Salvador Madariaga Program (grant to M.C.J.)) is gratefully acknowledged. en_EN
dc.language Inglés es_ES
dc.publisher Royal Society of Chemistry es_ES
dc.relation.ispartof Photochemical &amp; Photobiological Sciences Photochemical and Photobiological Sciences es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Fluorescence up-conversion es_ES
dc.subject Time-resolved photoelectron es_ES
dc.subject Jet-cooled adenine es_ES
dc.subject Electronic relaxation dynamics es_ES
dc.subject Double-resonance spectroscopy es_ES
dc.subject Nucleic-acid bases es_ES
dc.subject Isolated dna bases es_ES
dc.subject A-t dna es_ES
dc.subject Aqueous-solution es_ES
dc.subject Radiationless decay es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.title A joint experimental/theoretical study of the ultrafast excited state deactivation of deoxyadenosine and 9-methyladenine in water and acetonitrile es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c3pp50060h
dc.relation.projectID info:eu-repo/grantAgreement/ANR//ANR-10-BLAN-0809/FR/Photo-induced energy transfer in methylated DNA helices and its relevance to UV damage : an interactive theoretical-experimental study/DNAexciton/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//JCI-2011-09926/ES/JCI-2011-09926/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Gustavsson, T.; Sarkar, N.; Vayá Pérez, I.; Jiménez Molero, MC.; Markovitsi, D.; Improta, R. (2013). A joint experimental/theoretical study of the ultrafast excited state deactivation of deoxyadenosine and 9-methyladenine in water and acetonitrile. Photochemical &amp; Photobiological Sciences Photochemical and Photobiological Sciences. 12(8):1375-1386. https://doi.org/10.1039/c3pp50060h es_ES
dc.description.accrualMethod S es_ES
dc.description.upvformatpinicio 1375 es_ES
dc.description.upvformatpfin 1386 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 8 es_ES
dc.relation.senia 254955
dc.identifier.eissn 1474-9092
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Agence Nationale de la Recherche, Francia es_ES
dc.contributor.funder Ministero dell'Istruzione dell'Università e della Ricerca, Italia es_ES
dc.description.references Crespo-Hernández, C. E., Cohen, B., Hare, P. M., & Kohler, B. (2004). Ultrafast Excited-State Dynamics in Nucleic Acids. Chemical Reviews, 104(4), 1977-2020. doi:10.1021/cr0206770 es_ES
dc.description.references Crespo-Hernández, C. E., Cohen, B., & Kohler, B. (2005). Base stacking controls excited-state dynamics in A·T DNA. Nature, 436(7054), 1141-1144. doi:10.1038/nature03933 es_ES
dc.description.references Middleton, C. T., de La Harpe, K., Su, C., Law, Y. K., Crespo-Hernández, C. E., & Kohler, B. (2009). DNA Excited-State Dynamics: From Single Bases to the Double Helix. Annual Review of Physical Chemistry, 60(1), 217-239. doi:10.1146/annurev.physchem.59.032607.093719 es_ES
dc.description.references Gustavsson, T., Improta, R., & Markovitsi, D. (2010). DNA/RNA: Building Blocks of Life Under UV Irradiation. The Journal of Physical Chemistry Letters, 1(13), 2025-2030. doi:10.1021/jz1004973 es_ES
dc.description.references Markovitsi, D., Gustavsson, T., & Vayá, I. (2010). Fluorescence of DNA Duplexes: From Model Helices to Natural DNA. The Journal of Physical Chemistry Letters, 1(22), 3271-3276. doi:10.1021/jz101122t es_ES
dc.description.references Shukla, M. K., & Leszczynski, J. (2007). Electronic Spectra, Excited State Structures and Interactions of Nucleic Acid Bases and Base Assemblies: A Review. Journal of Biomolecular Structure and Dynamics, 25(1), 93-118. doi:10.1080/07391102.2007.10507159 es_ES
dc.description.references Schwalb, N. K., & Temps, F. (2008). Base Sequence and Higher-Order Structure Induce the Complex Excited-State Dynamics in DNA. Science, 322(5899), 243-245. doi:10.1126/science.1161651 es_ES
dc.description.references Serrano-Andrés, L., & Merchán, M. (2009). Are the five natural DNA/RNA base monomers a good choice from natural selection? Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 10(1), 21-32. doi:10.1016/j.jphotochemrev.2008.12.001 es_ES
dc.description.references Markovitsi, D., Gustavsson, T., & Banyasz, A. (2010). Absorption of UV radiation by DNA: Spatial and temporal features. Mutation Research/Reviews in Mutation Research, 704(1-3), 21-28. doi:10.1016/j.mrrev.2009.11.003 es_ES
dc.description.references Bouvier, B., Gustavsson, T., Markovitsi, D., & Millié, P. (2002). Dipolar coupling between electronic transitions of the DNA bases and its relevance to exciton states in double helices. Chemical Physics, 275(1-3), 75-92. doi:10.1016/s0301-0104(01)00523-7 es_ES
dc.description.references Bittner, E. R. (2007). Frenkel exciton model of ultrafast excited state dynamics in AT DNA double helices. Journal of Photochemistry and Photobiology A: Chemistry, 190(2-3), 328-334. doi:10.1016/j.jphotochem.2006.12.007 es_ES
dc.description.references Buchvarov, I., Wang, Q., Raytchev, M., Trifonov, A., & Fiebig, T. (2007). Electronic energy delocalization and dissipation in single- and double-stranded DNA. Proceedings of the National Academy of Sciences, 104(12), 4794-4797. doi:10.1073/pnas.0606757104 es_ES
dc.description.references Starikov, E. B., Cuniberti, G., & Tanaka, S. (2009). Conformation Dependence of DNA Exciton Parentage. The Journal of Physical Chemistry B, 113(30), 10428-10435. doi:10.1021/jp9035869 es_ES
dc.description.references Lange, A. W., & Herbert, J. M. (2009). Both Intra- and Interstrand Charge-Transfer Excited States in Aqueous B-DNA Are Present at Energies Comparable To, or Just Above, the1ππ* Excitonic Bright States. Journal of the American Chemical Society, 131(11), 3913-3922. doi:10.1021/ja808998q es_ES
dc.description.references Santoro, F., Barone, V., & Improta, R. (2009). Excited States Decay of the A−T DNA: A PCM/TD-DFT Study in Aqueous Solution of the (9-Methyl-adenine)2·(1-methyl-thymine)2Stacked Tetramer. Journal of the American Chemical Society, 131(42), 15232-15245. doi:10.1021/ja904777h es_ES
dc.description.references Lu, Y., Lan, Z., & Thiel, W. (2011). Hydrogen Bonding Regulates the Monomeric Nonradiative Decay of Adenine in DNA Strands. Angewandte Chemie International Edition, 50(30), 6864-6867. doi:10.1002/anie.201008146 es_ES
dc.description.references Clark, L. B., Peschel, G. G., & Tinoco, I. (1965). Vapor Spectra and Heats of Vaporization of Some Purine and Pyrimidine Bases1. The Journal of Physical Chemistry, 69(10), 3615-3618. doi:10.1021/j100894a063 es_ES
dc.description.references Kim, N. J., Jeong, G., Kim, Y. S., Sung, J., Keun Kim, S., & Park, Y. D. (2000). Resonant two-photon ionization and laser induced fluorescence spectroscopy of jet-cooled adenine. The Journal of Chemical Physics, 113(22), 10051-10055. doi:10.1063/1.1322072 es_ES
dc.description.references Lührs, D. C., Viallon, J., & Fischer, I. (2001). Excited state spectroscopy and dynamics of isolated adenine and 9-methyladenine. Physical Chemistry Chemical Physics, 3(10), 1827-1831. doi:10.1039/b101191j es_ES
dc.description.references Nir, E., Kleinermanns, K., Grace, L., & de Vries, M. S. (2001). On the Photochemistry of Purine Nucleobases. The Journal of Physical Chemistry A, 105(21), 5106-5110. doi:10.1021/jp0030645 es_ES
dc.description.references Plützer, C., Nir, E., de Vries, M. S., & Kleinermanns, K. (2001). IR–UV double-resonance spectroscopy of the nucleobase adenine. Physical Chemistry Chemical Physics, 3(24), 5466-5469. doi:10.1039/b107997b es_ES
dc.description.references Nir, E., Plützer, C., Kleinermanns, K., & de Vries, M. (2002). Properties of isolated DNA bases, base pairs and nucleosides examined by laser spectroscopy. The European Physical Journal D, 20(3), 317-329. doi:10.1140/epjd/e2002-00167-2 es_ES
dc.description.references Plützer, C., & Kleinermanns, K. (2002). Tautomers and electronic states of jet-cooled adenine investigated by double resonance spectroscopy. Phys. Chem. Chem. Phys., 4(20), 4877-4882. doi:10.1039/b204595h es_ES
dc.description.references Joon Kim, N., Kang, H., Dong Park, Y., & Keun Kim, S. (2004). Dispersed fluorescence spectroscopy of jet-cooled adenine. Physical Chemistry Chemical Physics, 6(10), 2802. doi:10.1039/b313467a es_ES
dc.description.references Perun, S., Sobolewski, A. L., & Domcke, W. (2005). Ab Initio Studies on the Radiationless Decay Mechanisms of the Lowest Excited Singlet States of 9H-Adenine. Journal of the American Chemical Society, 127(17), 6257-6265. doi:10.1021/ja044321c es_ES
dc.description.references Serrano-Andres, L., Merchan, M., & Borin, A. C. (2006). Adenine and 2-aminopurine: Paradigms of modern theoretical photochemistry. Proceedings of the National Academy of Sciences, 103(23), 8691-8696. doi:10.1073/pnas.0602991103 es_ES
dc.description.references Serrano-Andrés, L., Merchán, M., & Borin, A. C. (2006). A Three-State Model for the Photophysics of Adenine. Chemistry - A European Journal, 12(25), 6559-6571. doi:10.1002/chem.200501515 es_ES
dc.description.references Conti, I., Garavelli, M., & Orlandi, G. (2009). Deciphering Low Energy Deactivation Channels in Adenine. Journal of the American Chemical Society, 131(44), 16108-16118. doi:10.1021/ja902311y es_ES
dc.description.references Ullrich, S., Schultz, T., Zgierski, M. Z., & Stolow, A. (2004). Direct Observation of Electronic Relaxation Dynamics in Adenine via Time-Resolved Photoelectron Spectroscopy. Journal of the American Chemical Society, 126(8), 2262-2263. doi:10.1021/ja030532q es_ES
dc.description.references Ullrich, S., Schultz, T., Zgierski, M. Z., & Stolow, A. (2004). Electronic relaxation dynamics in DNA and RNA bases studied by time-resolved photoelectron spectroscopy. Physical Chemistry Chemical Physics, 6(10), 2796. doi:10.1039/b316324e es_ES
dc.description.references Canuel, C., Mons, M., Piuzzi, F., Tardivel, B., Dimicoli, I., & Elhanine, M. (2005). Excited states dynamics of DNA and RNA bases: Characterization of a stepwise deactivation pathway in the gas phase. The Journal of Chemical Physics, 122(7), 074316. doi:10.1063/1.1850469 es_ES
dc.description.references Canuel, C., Elhanine, M., Mons, M., Piuzzi, F., Tardivel, B., & Dimicoli, I. (2006). Time-resolved photoelectron and photoion fragmentation spectroscopy study of 9-methyladenine and its hydrates: a contribution to the understanding of the ultrafast radiationless decay of excited DNA bases. Physical Chemistry Chemical Physics, 8(34), 3978. doi:10.1039/b606437j es_ES
dc.description.references Ritze, H.-H., Lippert, H., Samoylova, E., Smith, V. R., Hertel, I. V., Radloff, W., & Schultz, T. (2005). Relevance of πσ* states in the photoinduced processes of adenine, adenine dimer, and adenine–water complexes. The Journal of Chemical Physics, 122(22), 224320. doi:10.1063/1.1914763 es_ES
dc.description.references Bisgaard, C. Z., Satzger, H., Ullrich, S., & Stolow, A. (2009). Excited-State Dynamics of Isolated DNA Bases: A Case Study of Adenine. ChemPhysChem, 10(1), 101-110. doi:10.1002/cphc.200800516 es_ES
dc.description.references Barbatti, M., & Lischka, H. (2008). Nonadiabatic Deactivation of 9H-Adenine: A Comprehensive Picture Based on Mixed Quantum−Classical Dynamics. Journal of the American Chemical Society, 130(21), 6831-6839. doi:10.1021/ja800589p es_ES
dc.description.references Fabiano, E., & Thiel, W. (2008). Nonradiative Deexcitation Dynamics of 9H-Adenine: An OM2 Surface Hopping Study. The Journal of Physical Chemistry A, 112(30), 6859-6863. doi:10.1021/jp8033402 es_ES
dc.description.references Lei, Y., Yuan, S., Dou, Y., Wang, Y., & Wen, Z. (2008). Detailed Dynamics of the Nonradiative Deactivation of Adenine: A Semiclassical Dynamics Study. The Journal of Physical Chemistry A, 112(37), 8497-8504. doi:10.1021/jp802483b es_ES
dc.description.references Mitrić, R., Werner, U., Wohlgemuth, M., Seifert, G., & Bonačić-Koutecký, V. (2009). Nonadiabatic Dynamics within Time-Dependent Density Functional Tight Binding Method†. The Journal of Physical Chemistry A, 113(45), 12700-12705. doi:10.1021/jp905600w es_ES
dc.description.references Barbatti, M., Aquino, A. J. A., Szymczak, J. J., Nachtigallova, D., Hobza, P., & Lischka, H. (2010). Relaxation mechanisms of UV-photoexcited DNA and RNA nucleobases. Proceedings of the National Academy of Sciences, 107(50), 21453-21458. doi:10.1073/pnas.1014982107 es_ES
dc.description.references Alexandrova, A. N., Tully, J. C., & Granucci, G. (2010). Photochemistry of DNA Fragments via Semiclassical Nonadiabatic Dynamics. The Journal of Physical Chemistry B, 114(37), 12116-12128. doi:10.1021/jp103322c es_ES
dc.description.references Barbatti, M., Lan, Z., Crespo-Otero, R., Szymczak, J. J., Lischka, H., & Thiel, W. (2012). Critical appraisal of excited state nonadiabatic dynamics simulations of 9H-adenine. The Journal of Chemical Physics, 137(22), 22A503. doi:10.1063/1.4731649 es_ES
dc.description.references Voet, D., Gratzer, W. B., Cox, R. A., & Doty, P. (1963). Absorption spectra of nucleotides, polynucleotides, and nucleic acids in the far ultraviolet. Biopolymers, 1(3), 193-208. doi:10.1002/bip.360010302 es_ES
dc.description.references Stewart, R. F., & Davidson, N. (1963). Polarized Absorption Spectra of Purines and Pyrimidines. The Journal of Chemical Physics, 39(2), 255-266. doi:10.1063/1.1734238 es_ES
dc.description.references Callis, P. R. (1983). Electronic States and Luminescence of Nucleic Acid Systems. Annual Review of Physical Chemistry, 34(1), 329-357. doi:10.1146/annurev.pc.34.100183.001553 es_ES
dc.description.references Voelter, W., Records, R., Bunnenberg, E., & Djerassi, C. (1968). Magnetic circular dichroism studies. VI. Investigation of some purines, pyrimidines, and nucleosides. Journal of the American Chemical Society, 90(22), 6163-6170. doi:10.1021/ja01024a039 es_ES
dc.description.references Holmén, A., Broo, A., Albinsson, B., & Nordén, B. (1997). Assignment of Electronic Transition Moment Directions of Adenine from Linear Dichroism Measurements. Journal of the American Chemical Society, 119(50), 12240-12250. doi:10.1021/ja9710262 es_ES
dc.description.references Hare, P. M., Crespo-Hernandez, C. E., & Kohler, B. (2006). Internal conversion to the electronic ground state occurs via two distinct pathways for pyrimidine bases in aqueous solution. Proceedings of the National Academy of Sciences, 104(2), 435-440. doi:10.1073/pnas.0608055104 es_ES
dc.description.references Yamazaki, S., & Kato, S. (2007). Solvent Effect on Conical Intersections in Excited-State 9H-Adenine:  Radiationless Decay Mechanism in Polar Solvent. Journal of the American Chemical Society, 129(10), 2901-2909. doi:10.1021/ja0669169 es_ES
dc.description.references Ludwig, V., da Costa, Z. M., do Amaral, M. S., Borin, A. C., Canuto, S., & Serrano-Andrés, L. (2010). Photophysics and photostability of adenine in aqueous solution: A theoretical study. Chemical Physics Letters, 492(1-3), 164-169. doi:10.1016/j.cplett.2010.04.048 es_ES
dc.description.references Mennucci, B., Toniolo, A., & Tomasi, J. (2001). Theoretical Study of the Photophysics of Adenine in Solution:  Tautomerism, Deactivation Mechanisms, and Comparison with the 2-Aminopurine Fluorescent Isomer. The Journal of Physical Chemistry A, 105(19), 4749-4757. doi:10.1021/jp0045843 es_ES
dc.description.references Improta, R., & Barone, V. (2008). The excited states of adenine and thymine nucleoside and nucleotide in aqueous solution: a comparative study by time-dependent DFT calculations. Theoretical Chemistry Accounts, 120(4-6), 491-497. doi:10.1007/s00214-007-0404-5 es_ES
dc.description.references Lan, Z., Lu, Y., Fabiano, E., & Thiel, W. (2011). QM/MM Nonadiabatic Decay Dynamics of 9H-Adenine in Aqueous Solution. ChemPhysChem, 12(10), 1989-1998. doi:10.1002/cphc.201001054 es_ES
dc.description.references Conti, I., Altoè, P., Stenta, M., Garavelli, M., & Orlandi, G. (2010). Adenine deactivation in DNA resolved at the CASPT2//CASSCF/AMBER level. Physical Chemistry Chemical Physics, 12(19), 5016. doi:10.1039/b926608a es_ES
dc.description.references Pecourt, J.-M. L., Peon, J., & Kohler, B. (2000). Ultrafast Internal Conversion of Electronically Excited RNA and DNA Nucleosides in Water. Journal of the American Chemical Society, 122(38), 9348-9349. doi:10.1021/ja0021520 es_ES
dc.description.references Peon, J., & Zewail, A. H. (2001). DNA/RNA nucleotides and nucleosides: direct measurement of excited-state lifetimes by femtosecond fluorescence up-conversion. Chemical Physics Letters, 348(3-4), 255-262. doi:10.1016/s0009-2614(01)01128-9 es_ES
dc.description.references Gustavsson, T., Sharonov, A., Onidas, D., & Markovitsi, D. (2002). Adenine, deoxyadenosine and deoxyadenosine 5′-monophosphate studied by femtosecond fluorescence upconversion spectroscopy. Chemical Physics Letters, 356(1-2), 49-54. doi:10.1016/s0009-2614(02)00290-7 es_ES
dc.description.references Onidas, D., Markovitsi, D., Marguet, S., Sharonov, A., & Gustavsson, T. (2002). Fluorescence Properties of DNA Nucleosides and Nucleotides:  A Refined Steady-State and Femtosecond Investigation. The Journal of Physical Chemistry B, 106(43), 11367-11374. doi:10.1021/jp026063g es_ES
dc.description.references Kwok, W.-M., Ma, C., & Phillips, D. L. (2006). Femtosecond Time- and Wavelength-Resolved Fluorescence and Absorption Spectroscopic Study of the Excited States of Adenosine and an Adenine Oligomer. Journal of the American Chemical Society, 128(36), 11894-11905. doi:10.1021/ja0622002 es_ES
dc.description.references Pancur, T., Schwalb, N. K., Renth, F., & Temps, F. (2005). Femtosecond fluorescence up-conversion spectroscopy of adenine and adenosine: experimental evidence for the πσ* state? Chemical Physics, 313(1-3), 199-212. doi:10.1016/j.chemphys.2004.12.019 es_ES
dc.description.references Cohen, B., Hare, P. M., & Kohler, B. (2003). Ultrafast Excited-State Dynamics of Adenine and Monomethylated Adenines in Solution:  Implications for the Nonradiative Decay Mechanism. Journal of the American Chemical Society, 125(44), 13594-13601. doi:10.1021/ja035628z es_ES
dc.description.references Gustavsson, T., Bányász, Á., Lazzarotto, E., Markovitsi, D., Scalmani, G., Frisch, M. J., … Improta, R. (2006). Singlet Excited-State Behavior of Uracil and Thymine in Aqueous Solution:  A Combined Experimental and Computational Study of 11 Uracil Derivatives. Journal of the American Chemical Society, 128(2), 607-619. doi:10.1021/ja056181s es_ES
dc.description.references Gustavsson, T., Sarkar, N., Lazzarotto, E., Markovitsi, D., Barone, V., & Improta, R. (2006). Solvent Effect on the Singlet Excited-state Dynamics of 5-Fluorouracil in Acetonitrile as Compared with Water. The Journal of Physical Chemistry B, 110(26), 12843-12847. doi:10.1021/jp062266j es_ES
dc.description.references Gustavsson, T., Sarkar, N., Lazzarotto, E., Markovitsi, D., & Improta, R. (2006). Singlet excited state dynamics of uracil and thymine derivatives: A femtosecond fluorescence upconversion study in acetonitrile. Chemical Physics Letters, 429(4-6), 551-557. doi:10.1016/j.cplett.2006.08.058 es_ES
dc.description.references Santoro, F., Barone, V., Gustavsson, T., & Improta, R. (2006). Solvent Effect on the Singlet Excited-State Lifetimes of Nucleic Acid Bases:  A Computational Study of 5-Fluorouracil and Uracil in Acetonitrile and Water. Journal of the American Chemical Society, 128(50), 16312-16322. doi:10.1021/ja0657861 es_ES
dc.description.references Gustavsson, T., Bányász, Á., Sarkar, N., Markovitsi, D., & Improta, R. (2008). Assessing solvent effects on the singlet excited state lifetime of uracil derivatives: A femtosecond fluorescence upconversion study in alcohols and D2O. Chemical Physics, 350(1-3), 186-192. doi:10.1016/j.chemphys.2008.02.032 es_ES
dc.description.references Gustavsson, T., Sharonov, A., & Markovitsi, D. (2002). Thymine, thymidine and thymidine 5′-monophosphate studied by femtosecond fluorescence upconversion spectroscopy. Chemical Physics Letters, 351(3-4), 195-200. doi:10.1016/s0009-2614(01)01375-6 es_ES
dc.description.references Adamo, C., & Barone, V. (1999). Toward reliable density functional methods without adjustable parameters: The PBE0 model. The Journal of Chemical Physics, 110(13), 6158-6170. doi:10.1063/1.478522 es_ES
dc.description.references Zhao, Y., Schultz, N. E., & Truhlar, D. G. (2006). Design of Density Functionals by Combining the Method of Constraint Satisfaction with Parametrization for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions. Journal of Chemical Theory and Computation, 2(2), 364-382. doi:10.1021/ct0502763 es_ES
dc.description.references Yanai, T., Tew, D. P., & Handy, N. C. (2004). A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chemical Physics Letters, 393(1-3), 51-57. doi:10.1016/j.cplett.2004.06.011 es_ES
dc.description.references Jacquemin, D., Perpète, E. A., Ciofini, I., & Adamo, C. (2009). Accurate Simulation of Optical Properties in Dyes. Accounts of Chemical Research, 42(2), 326-334. doi:10.1021/ar800163d es_ES
dc.description.references Bányász, A., Karpati, S., Mercier, Y., Reguero, M., Gustavsson, T., Markovitsi, D., & Improta, R. (2010). The Peculiar Spectral Properties of Amino-Substituted Uracils: A Combined Theoretical and Experimental Study. The Journal of Physical Chemistry B, 114(39), 12708-12719. doi:10.1021/jp105267q es_ES
dc.description.references Santoro, F., Barone, V., & Improta, R. (2007). Influence of base stacking on excited-state behavior of polyadenine in water, based on time-dependent density functional calculations. Proceedings of the National Academy of Sciences, 104(24), 9931-9936. doi:10.1073/pnas.0703298104 es_ES
dc.description.references Karunakaran, V., Kleinermanns, K., Improta, R., & Kovalenko, S. A. (2009). Photoinduced Dynamics of Guanosine Monophosphate in Water from Broad-Band Transient Absorption Spectroscopy and Quantum-Chemical Calculations. Journal of the American Chemical Society, 131(16), 5839-5850. doi:10.1021/ja810092k es_ES
dc.description.references Improta, R. (2008). The excited states of π-stacked 9-methyladenine oligomers: a TD-DFT study in aqueous solution. Physical Chemistry Chemical Physics, 10(19), 2656. doi:10.1039/b718562f es_ES
dc.description.references Santoro, F., Barone, V., & Improta, R. (2008). Absorption Spectrum of A-T DNA Unraveled by Quantum Mechanical Calculations in Solution on the (dA)2⋅(dT)2Tetramer. ChemPhysChem, 9(17), 2531-2537. doi:10.1002/cphc.200800617 es_ES
dc.description.references Improta, R., & Barone, V. (2011). Interplay between «Neutral» and «Charge-Transfer» Excimers Rules the Excited State Decay in Adenine-Rich Polynucleotides. Angewandte Chemie International Edition, 50(50), 12016-12019. doi:10.1002/anie.201104382 es_ES
dc.description.references Banyasz, A., Gustavsson, T., Onidas, D., Changenet-Barret, P., Markovitsi, D., & Improta, R. (2013). Multi-Pathway Excited State Relaxation of Adenine Oligomers in Aqueous Solution: A Joint Theoretical and Experimental Study. Chemistry - A European Journal, 19(11), 3762-3774. doi:10.1002/chem.201202741 es_ES
dc.description.references Dargiewicz, M., Biczysko, M., Improta, R., & Barone, V. (2012). Solvent effects on electron-driven proton-transfer processes: adenine–thymine base pairs. Physical Chemistry Chemical Physics, 14(25), 8981. doi:10.1039/c2cp23890j es_ES
dc.description.references Biemann, L., Kovalenko, S. A., Kleinermanns, K., Mahrwald, R., Markert, M., & Improta, R. (2011). Excited State Proton Transfer Is Not Involved in the Ultrafast Deactivation of Guanine–Cytosine Pair in Solution. Journal of the American Chemical Society, 133(49), 19664-19667. doi:10.1021/ja2089734 es_ES
dc.description.references Tomasi, J., Mennucci, B., & Cammi, R. (2005). Quantum Mechanical Continuum Solvation Models. Chemical Reviews, 105(8), 2999-3094. doi:10.1021/cr9904009 es_ES
dc.description.references Scalmani, G., Frisch, M. J., Mennucci, B., Tomasi, J., Cammi, R., & Barone, V. (2006). Geometries and properties of excited states in the gas phase and in solution: Theory and application of a time-dependent density functional theory polarizable continuum model. The Journal of Chemical Physics, 124(9), 094107. doi:10.1063/1.2173258 es_ES
dc.description.references Improta, R., Barone, V., Scalmani, G., & Frisch, M. J. (2006). A state-specific polarizable continuum model time dependent density functional theory method for excited state calculations in solution. The Journal of Chemical Physics, 125(5), 054103. doi:10.1063/1.2222364 es_ES
dc.description.references Improta, R., Scalmani, G., Frisch, M. J., & Barone, V. (2007). Toward effective and reliable fluorescence energies in solution by a new state specific polarizable continuum model time dependent density functional theory approach. The Journal of Chemical Physics, 127(7), 074504. doi:10.1063/1.2757168 es_ES
dc.description.references Miannay, F.-A., Gustavsson, T., Banyasz, A., & Markovitsi, D. (2010). Excited-State Dynamics of dGMP Measured by Steady-State and Femtosecond Fluorescence Spectroscopy†. The Journal of Physical Chemistry A, 114(9), 3256-3263. doi:10.1021/jp909410b es_ES
dc.description.references Avila Ferrer, F. J., Cerezo, J., Stendardo, E., Improta, R., & Santoro, F. (2013). Insights for an Accurate Comparison of Computational Data to Experimental Absorption and Emission Spectra: Beyond the Vertical Transition Approximation. Journal of Chemical Theory and Computation, 9(4), 2072-2082. doi:10.1021/ct301107m es_ES
dc.description.references Cremer, D., & Pople, J. A. (1975). General definition of ring puckering coordinates. Journal of the American Chemical Society, 97(6), 1354-1358. doi:10.1021/ja00839a011 es_ES
dc.description.references Cohen, B., Crespo-Hernández, C. E., & Kohler, B. (2004). Strickler–Berg analysis of excited singlet state dynamics in DNA and RNA nucleosides. Faraday Discuss., 127, 137-147. doi:10.1039/b316939a es_ES
dc.description.references Improta, R., Barone, V., Lami, A., & Santoro, F. (2009). Quantum Dynamics of the Ultrafast ππ*/nπ* Population Transfer in Uracil and 5-Fluoro-Uracil in Water and Acetonitrile. The Journal of Physical Chemistry B, 113(43), 14491-14503. doi:10.1021/jp906524p es_ES
dc.description.references Mercier, Y., Santoro, F., Reguero, M., & Improta, R. (2008). The Decay from the Dark nπ* Excited State in Uracil: An Integrated CASPT2/CASSCF and PCM/TD-DFT Study in the Gas Phase and in Water. The Journal of Physical Chemistry B, 112(35), 10769-10772. doi:10.1021/jp804785p es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem