Mostrar el registro sencillo del ítem
dc.contributor.author | Gustavsson, Thomas | es_ES |
dc.contributor.author | Sarkar, Nilmoni | es_ES |
dc.contributor.author | Vayá Pérez, Ignacio | es_ES |
dc.contributor.author | Jiménez Molero, María Consuelo | es_ES |
dc.contributor.author | Markovitsi, Dimitra | es_ES |
dc.contributor.author | Improta, Roberto | es_ES |
dc.date.accessioned | 2015-11-10T13:02:45Z | |
dc.date.available | 2015-11-10T13:02:45Z | |
dc.date.issued | 2013 | |
dc.identifier.issn | 1474-905X | |
dc.identifier.uri | http://hdl.handle.net/10251/57286 | |
dc.description.abstract | The excited states of deoxyadenosine (dA) and 9-methyladenine (9Me-Ade) were studied in water and acetonitrile by a combination of steady-state and time-resolved spectroscopy and quantum chemical calculations. Femtosecond fluorescence upconversion experiments show that the decays of dA and 9Me-Ade after excitation at 267 nm are very similar, confirming that 9Me-Ade is a valid model for the calculations. The fluorescence decays can be described by an ultrafast component (<100 fs) and a slower one (≈ 300–500 fs); they are slightly slower in acetonitrile than in water. Time-dependent DFT calculations on 9Me-Ade, using PBE0 and M052X functionals and including both bulk and specific solvent effects, provide absorption and emission spectra in good agreement with experiments, giving a comprehensive description of the decay mechanism. It is shown that, in the Franck–Condon region, the lowest in energy state is the optically bright La state, with the Lb state situated about 2000 cm−1 higher. Both states are populated when excited at 267 nm, but the Lb state undergoes an ultrafast Lb → La decay, too fast for our time-resolution (≈ 80 fs). This is confirmed by the experimentally observed fluorescence anisotropies, attaining values lower than 0.4 already at time zero. Consequently, the ensuing excited state relaxation mechanism can be described as the evolution along an almost barrierless path from the Franck–Condon region of the La potential energy surface towards a conical intersection with the ground state. This internal conversion mechanism proceeds without any significant involvement of any nearlying nπ* state. | es_ES |
dc.description.sponsorship | R.I. thanks MIUR (FIRB 2008 Futuro in Ricerca and PRIN 2010-2011) for financial support. The French Agency for Research (ANR-10-BLAN-0809-01, "DNAExciton") is acknowledged for financial support. Financial support from the Spanish Government (JCI-2011-09926 and Salvador Madariaga Program (grant to M.C.J.)) is gratefully acknowledged. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Royal Society of Chemistry | es_ES |
dc.relation.ispartof | Photochemical & Photobiological Sciences Photochemical and Photobiological Sciences | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Fluorescence up-conversion | es_ES |
dc.subject | Time-resolved photoelectron | es_ES |
dc.subject | Jet-cooled adenine | es_ES |
dc.subject | Electronic relaxation dynamics | es_ES |
dc.subject | Double-resonance spectroscopy | es_ES |
dc.subject | Nucleic-acid bases | es_ES |
dc.subject | Isolated dna bases | es_ES |
dc.subject | A-t dna | es_ES |
dc.subject | Aqueous-solution | es_ES |
dc.subject | Radiationless decay | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.subject.classification | QUIMICA ANALITICA | es_ES |
dc.title | A joint experimental/theoretical study of the ultrafast excited state deactivation of deoxyadenosine and 9-methyladenine in water and acetonitrile | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1039/c3pp50060h | |
dc.relation.projectID | info:eu-repo/grantAgreement/ANR//ANR-10-BLAN-0809/FR/Photo-induced energy transfer in methylated DNA helices and its relevance to UV damage : an interactive theoretical-experimental study/DNAexciton/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//JCI-2011-09926/ES/JCI-2011-09926/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Gustavsson, T.; Sarkar, N.; Vayá Pérez, I.; Jiménez Molero, MC.; Markovitsi, D.; Improta, R. (2013). A joint experimental/theoretical study of the ultrafast excited state deactivation of deoxyadenosine and 9-methyladenine in water and acetonitrile. Photochemical & Photobiological Sciences Photochemical and Photobiological Sciences. 12(8):1375-1386. https://doi.org/10.1039/c3pp50060h | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.description.upvformatpinicio | 1375 | es_ES |
dc.description.upvformatpfin | 1386 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 12 | es_ES |
dc.description.issue | 8 | es_ES |
dc.relation.senia | 254955 | |
dc.identifier.eissn | 1474-9092 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Agence Nationale de la Recherche, Francia | es_ES |
dc.contributor.funder | Ministero dell'Istruzione dell'Università e della Ricerca, Italia | es_ES |
dc.description.references | Crespo-Hernández, C. E., Cohen, B., Hare, P. M., & Kohler, B. (2004). Ultrafast Excited-State Dynamics in Nucleic Acids. Chemical Reviews, 104(4), 1977-2020. doi:10.1021/cr0206770 | es_ES |
dc.description.references | Crespo-Hernández, C. E., Cohen, B., & Kohler, B. (2005). Base stacking controls excited-state dynamics in A·T DNA. Nature, 436(7054), 1141-1144. doi:10.1038/nature03933 | es_ES |
dc.description.references | Middleton, C. T., de La Harpe, K., Su, C., Law, Y. K., Crespo-Hernández, C. E., & Kohler, B. (2009). DNA Excited-State Dynamics: From Single Bases to the Double Helix. Annual Review of Physical Chemistry, 60(1), 217-239. doi:10.1146/annurev.physchem.59.032607.093719 | es_ES |
dc.description.references | Gustavsson, T., Improta, R., & Markovitsi, D. (2010). DNA/RNA: Building Blocks of Life Under UV Irradiation. The Journal of Physical Chemistry Letters, 1(13), 2025-2030. doi:10.1021/jz1004973 | es_ES |
dc.description.references | Markovitsi, D., Gustavsson, T., & Vayá, I. (2010). Fluorescence of DNA Duplexes: From Model Helices to Natural DNA. The Journal of Physical Chemistry Letters, 1(22), 3271-3276. doi:10.1021/jz101122t | es_ES |
dc.description.references | Shukla, M. K., & Leszczynski, J. (2007). Electronic Spectra, Excited State Structures and Interactions of Nucleic Acid Bases and Base Assemblies: A Review. Journal of Biomolecular Structure and Dynamics, 25(1), 93-118. doi:10.1080/07391102.2007.10507159 | es_ES |
dc.description.references | Schwalb, N. K., & Temps, F. (2008). Base Sequence and Higher-Order Structure Induce the Complex Excited-State Dynamics in DNA. Science, 322(5899), 243-245. doi:10.1126/science.1161651 | es_ES |
dc.description.references | Serrano-Andrés, L., & Merchán, M. (2009). Are the five natural DNA/RNA base monomers a good choice from natural selection? Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 10(1), 21-32. doi:10.1016/j.jphotochemrev.2008.12.001 | es_ES |
dc.description.references | Markovitsi, D., Gustavsson, T., & Banyasz, A. (2010). Absorption of UV radiation by DNA: Spatial and temporal features. Mutation Research/Reviews in Mutation Research, 704(1-3), 21-28. doi:10.1016/j.mrrev.2009.11.003 | es_ES |
dc.description.references | Bouvier, B., Gustavsson, T., Markovitsi, D., & Millié, P. (2002). Dipolar coupling between electronic transitions of the DNA bases and its relevance to exciton states in double helices. Chemical Physics, 275(1-3), 75-92. doi:10.1016/s0301-0104(01)00523-7 | es_ES |
dc.description.references | Bittner, E. R. (2007). Frenkel exciton model of ultrafast excited state dynamics in AT DNA double helices. Journal of Photochemistry and Photobiology A: Chemistry, 190(2-3), 328-334. doi:10.1016/j.jphotochem.2006.12.007 | es_ES |
dc.description.references | Buchvarov, I., Wang, Q., Raytchev, M., Trifonov, A., & Fiebig, T. (2007). Electronic energy delocalization and dissipation in single- and double-stranded DNA. Proceedings of the National Academy of Sciences, 104(12), 4794-4797. doi:10.1073/pnas.0606757104 | es_ES |
dc.description.references | Starikov, E. B., Cuniberti, G., & Tanaka, S. (2009). Conformation Dependence of DNA Exciton Parentage. The Journal of Physical Chemistry B, 113(30), 10428-10435. doi:10.1021/jp9035869 | es_ES |
dc.description.references | Lange, A. W., & Herbert, J. M. (2009). Both Intra- and Interstrand Charge-Transfer Excited States in Aqueous B-DNA Are Present at Energies Comparable To, or Just Above, the1ππ* Excitonic Bright States. Journal of the American Chemical Society, 131(11), 3913-3922. doi:10.1021/ja808998q | es_ES |
dc.description.references | Santoro, F., Barone, V., & Improta, R. (2009). Excited States Decay of the A−T DNA: A PCM/TD-DFT Study in Aqueous Solution of the (9-Methyl-adenine)2·(1-methyl-thymine)2Stacked Tetramer. Journal of the American Chemical Society, 131(42), 15232-15245. doi:10.1021/ja904777h | es_ES |
dc.description.references | Lu, Y., Lan, Z., & Thiel, W. (2011). Hydrogen Bonding Regulates the Monomeric Nonradiative Decay of Adenine in DNA Strands. Angewandte Chemie International Edition, 50(30), 6864-6867. doi:10.1002/anie.201008146 | es_ES |
dc.description.references | Clark, L. B., Peschel, G. G., & Tinoco, I. (1965). Vapor Spectra and Heats of Vaporization of Some Purine and Pyrimidine Bases1. The Journal of Physical Chemistry, 69(10), 3615-3618. doi:10.1021/j100894a063 | es_ES |
dc.description.references | Kim, N. J., Jeong, G., Kim, Y. S., Sung, J., Keun Kim, S., & Park, Y. D. (2000). Resonant two-photon ionization and laser induced fluorescence spectroscopy of jet-cooled adenine. The Journal of Chemical Physics, 113(22), 10051-10055. doi:10.1063/1.1322072 | es_ES |
dc.description.references | Lührs, D. C., Viallon, J., & Fischer, I. (2001). Excited state spectroscopy and dynamics of isolated adenine and 9-methyladenine. Physical Chemistry Chemical Physics, 3(10), 1827-1831. doi:10.1039/b101191j | es_ES |
dc.description.references | Nir, E., Kleinermanns, K., Grace, L., & de Vries, M. S. (2001). On the Photochemistry of Purine Nucleobases. The Journal of Physical Chemistry A, 105(21), 5106-5110. doi:10.1021/jp0030645 | es_ES |
dc.description.references | Plützer, C., Nir, E., de Vries, M. S., & Kleinermanns, K. (2001). IR–UV double-resonance spectroscopy of the nucleobase adenine. Physical Chemistry Chemical Physics, 3(24), 5466-5469. doi:10.1039/b107997b | es_ES |
dc.description.references | Nir, E., Plützer, C., Kleinermanns, K., & de Vries, M. (2002). Properties of isolated DNA bases, base pairs and nucleosides examined by laser spectroscopy. The European Physical Journal D, 20(3), 317-329. doi:10.1140/epjd/e2002-00167-2 | es_ES |
dc.description.references | Plützer, C., & Kleinermanns, K. (2002). Tautomers and electronic states of jet-cooled adenine investigated by double resonance spectroscopy. Phys. Chem. Chem. Phys., 4(20), 4877-4882. doi:10.1039/b204595h | es_ES |
dc.description.references | Joon Kim, N., Kang, H., Dong Park, Y., & Keun Kim, S. (2004). Dispersed fluorescence spectroscopy of jet-cooled adenine. Physical Chemistry Chemical Physics, 6(10), 2802. doi:10.1039/b313467a | es_ES |
dc.description.references | Perun, S., Sobolewski, A. L., & Domcke, W. (2005). Ab Initio Studies on the Radiationless Decay Mechanisms of the Lowest Excited Singlet States of 9H-Adenine. Journal of the American Chemical Society, 127(17), 6257-6265. doi:10.1021/ja044321c | es_ES |
dc.description.references | Serrano-Andres, L., Merchan, M., & Borin, A. C. (2006). Adenine and 2-aminopurine: Paradigms of modern theoretical photochemistry. Proceedings of the National Academy of Sciences, 103(23), 8691-8696. doi:10.1073/pnas.0602991103 | es_ES |
dc.description.references | Serrano-Andrés, L., Merchán, M., & Borin, A. C. (2006). A Three-State Model for the Photophysics of Adenine. Chemistry - A European Journal, 12(25), 6559-6571. doi:10.1002/chem.200501515 | es_ES |
dc.description.references | Conti, I., Garavelli, M., & Orlandi, G. (2009). Deciphering Low Energy Deactivation Channels in Adenine. Journal of the American Chemical Society, 131(44), 16108-16118. doi:10.1021/ja902311y | es_ES |
dc.description.references | Ullrich, S., Schultz, T., Zgierski, M. Z., & Stolow, A. (2004). Direct Observation of Electronic Relaxation Dynamics in Adenine via Time-Resolved Photoelectron Spectroscopy. Journal of the American Chemical Society, 126(8), 2262-2263. doi:10.1021/ja030532q | es_ES |
dc.description.references | Ullrich, S., Schultz, T., Zgierski, M. Z., & Stolow, A. (2004). Electronic relaxation dynamics in DNA and RNA bases studied by time-resolved photoelectron spectroscopy. Physical Chemistry Chemical Physics, 6(10), 2796. doi:10.1039/b316324e | es_ES |
dc.description.references | Canuel, C., Mons, M., Piuzzi, F., Tardivel, B., Dimicoli, I., & Elhanine, M. (2005). Excited states dynamics of DNA and RNA bases: Characterization of a stepwise deactivation pathway in the gas phase. The Journal of Chemical Physics, 122(7), 074316. doi:10.1063/1.1850469 | es_ES |
dc.description.references | Canuel, C., Elhanine, M., Mons, M., Piuzzi, F., Tardivel, B., & Dimicoli, I. (2006). Time-resolved photoelectron and photoion fragmentation spectroscopy study of 9-methyladenine and its hydrates: a contribution to the understanding of the ultrafast radiationless decay of excited DNA bases. Physical Chemistry Chemical Physics, 8(34), 3978. doi:10.1039/b606437j | es_ES |
dc.description.references | Ritze, H.-H., Lippert, H., Samoylova, E., Smith, V. R., Hertel, I. V., Radloff, W., & Schultz, T. (2005). Relevance of πσ* states in the photoinduced processes of adenine, adenine dimer, and adenine–water complexes. The Journal of Chemical Physics, 122(22), 224320. doi:10.1063/1.1914763 | es_ES |
dc.description.references | Bisgaard, C. Z., Satzger, H., Ullrich, S., & Stolow, A. (2009). Excited-State Dynamics of Isolated DNA Bases: A Case Study of Adenine. ChemPhysChem, 10(1), 101-110. doi:10.1002/cphc.200800516 | es_ES |
dc.description.references | Barbatti, M., & Lischka, H. (2008). Nonadiabatic Deactivation of 9H-Adenine: A Comprehensive Picture Based on Mixed Quantum−Classical Dynamics. Journal of the American Chemical Society, 130(21), 6831-6839. doi:10.1021/ja800589p | es_ES |
dc.description.references | Fabiano, E., & Thiel, W. (2008). Nonradiative Deexcitation Dynamics of 9H-Adenine: An OM2 Surface Hopping Study. The Journal of Physical Chemistry A, 112(30), 6859-6863. doi:10.1021/jp8033402 | es_ES |
dc.description.references | Lei, Y., Yuan, S., Dou, Y., Wang, Y., & Wen, Z. (2008). Detailed Dynamics of the Nonradiative Deactivation of Adenine: A Semiclassical Dynamics Study. The Journal of Physical Chemistry A, 112(37), 8497-8504. doi:10.1021/jp802483b | es_ES |
dc.description.references | Mitrić, R., Werner, U., Wohlgemuth, M., Seifert, G., & Bonačić-Koutecký, V. (2009). Nonadiabatic Dynamics within Time-Dependent Density Functional Tight Binding Method†. The Journal of Physical Chemistry A, 113(45), 12700-12705. doi:10.1021/jp905600w | es_ES |
dc.description.references | Barbatti, M., Aquino, A. J. A., Szymczak, J. J., Nachtigallova, D., Hobza, P., & Lischka, H. (2010). Relaxation mechanisms of UV-photoexcited DNA and RNA nucleobases. Proceedings of the National Academy of Sciences, 107(50), 21453-21458. doi:10.1073/pnas.1014982107 | es_ES |
dc.description.references | Alexandrova, A. N., Tully, J. C., & Granucci, G. (2010). Photochemistry of DNA Fragments via Semiclassical Nonadiabatic Dynamics. The Journal of Physical Chemistry B, 114(37), 12116-12128. doi:10.1021/jp103322c | es_ES |
dc.description.references | Barbatti, M., Lan, Z., Crespo-Otero, R., Szymczak, J. J., Lischka, H., & Thiel, W. (2012). Critical appraisal of excited state nonadiabatic dynamics simulations of 9H-adenine. The Journal of Chemical Physics, 137(22), 22A503. doi:10.1063/1.4731649 | es_ES |
dc.description.references | Voet, D., Gratzer, W. B., Cox, R. A., & Doty, P. (1963). Absorption spectra of nucleotides, polynucleotides, and nucleic acids in the far ultraviolet. Biopolymers, 1(3), 193-208. doi:10.1002/bip.360010302 | es_ES |
dc.description.references | Stewart, R. F., & Davidson, N. (1963). Polarized Absorption Spectra of Purines and Pyrimidines. The Journal of Chemical Physics, 39(2), 255-266. doi:10.1063/1.1734238 | es_ES |
dc.description.references | Callis, P. R. (1983). Electronic States and Luminescence of Nucleic Acid Systems. Annual Review of Physical Chemistry, 34(1), 329-357. doi:10.1146/annurev.pc.34.100183.001553 | es_ES |
dc.description.references | Voelter, W., Records, R., Bunnenberg, E., & Djerassi, C. (1968). Magnetic circular dichroism studies. VI. Investigation of some purines, pyrimidines, and nucleosides. Journal of the American Chemical Society, 90(22), 6163-6170. doi:10.1021/ja01024a039 | es_ES |
dc.description.references | Holmén, A., Broo, A., Albinsson, B., & Nordén, B. (1997). Assignment of Electronic Transition Moment Directions of Adenine from Linear Dichroism Measurements. Journal of the American Chemical Society, 119(50), 12240-12250. doi:10.1021/ja9710262 | es_ES |
dc.description.references | Hare, P. M., Crespo-Hernandez, C. E., & Kohler, B. (2006). Internal conversion to the electronic ground state occurs via two distinct pathways for pyrimidine bases in aqueous solution. Proceedings of the National Academy of Sciences, 104(2), 435-440. doi:10.1073/pnas.0608055104 | es_ES |
dc.description.references | Yamazaki, S., & Kato, S. (2007). Solvent Effect on Conical Intersections in Excited-State 9H-Adenine: Radiationless Decay Mechanism in Polar Solvent. Journal of the American Chemical Society, 129(10), 2901-2909. doi:10.1021/ja0669169 | es_ES |
dc.description.references | Ludwig, V., da Costa, Z. M., do Amaral, M. S., Borin, A. C., Canuto, S., & Serrano-Andrés, L. (2010). Photophysics and photostability of adenine in aqueous solution: A theoretical study. Chemical Physics Letters, 492(1-3), 164-169. doi:10.1016/j.cplett.2010.04.048 | es_ES |
dc.description.references | Mennucci, B., Toniolo, A., & Tomasi, J. (2001). Theoretical Study of the Photophysics of Adenine in Solution: Tautomerism, Deactivation Mechanisms, and Comparison with the 2-Aminopurine Fluorescent Isomer. The Journal of Physical Chemistry A, 105(19), 4749-4757. doi:10.1021/jp0045843 | es_ES |
dc.description.references | Improta, R., & Barone, V. (2008). The excited states of adenine and thymine nucleoside and nucleotide in aqueous solution: a comparative study by time-dependent DFT calculations. Theoretical Chemistry Accounts, 120(4-6), 491-497. doi:10.1007/s00214-007-0404-5 | es_ES |
dc.description.references | Lan, Z., Lu, Y., Fabiano, E., & Thiel, W. (2011). QM/MM Nonadiabatic Decay Dynamics of 9H-Adenine in Aqueous Solution. ChemPhysChem, 12(10), 1989-1998. doi:10.1002/cphc.201001054 | es_ES |
dc.description.references | Conti, I., Altoè, P., Stenta, M., Garavelli, M., & Orlandi, G. (2010). Adenine deactivation in DNA resolved at the CASPT2//CASSCF/AMBER level. Physical Chemistry Chemical Physics, 12(19), 5016. doi:10.1039/b926608a | es_ES |
dc.description.references | Pecourt, J.-M. L., Peon, J., & Kohler, B. (2000). Ultrafast Internal Conversion of Electronically Excited RNA and DNA Nucleosides in Water. Journal of the American Chemical Society, 122(38), 9348-9349. doi:10.1021/ja0021520 | es_ES |
dc.description.references | Peon, J., & Zewail, A. H. (2001). DNA/RNA nucleotides and nucleosides: direct measurement of excited-state lifetimes by femtosecond fluorescence up-conversion. Chemical Physics Letters, 348(3-4), 255-262. doi:10.1016/s0009-2614(01)01128-9 | es_ES |
dc.description.references | Gustavsson, T., Sharonov, A., Onidas, D., & Markovitsi, D. (2002). Adenine, deoxyadenosine and deoxyadenosine 5′-monophosphate studied by femtosecond fluorescence upconversion spectroscopy. Chemical Physics Letters, 356(1-2), 49-54. doi:10.1016/s0009-2614(02)00290-7 | es_ES |
dc.description.references | Onidas, D., Markovitsi, D., Marguet, S., Sharonov, A., & Gustavsson, T. (2002). Fluorescence Properties of DNA Nucleosides and Nucleotides: A Refined Steady-State and Femtosecond Investigation. The Journal of Physical Chemistry B, 106(43), 11367-11374. doi:10.1021/jp026063g | es_ES |
dc.description.references | Kwok, W.-M., Ma, C., & Phillips, D. L. (2006). Femtosecond Time- and Wavelength-Resolved Fluorescence and Absorption Spectroscopic Study of the Excited States of Adenosine and an Adenine Oligomer. Journal of the American Chemical Society, 128(36), 11894-11905. doi:10.1021/ja0622002 | es_ES |
dc.description.references | Pancur, T., Schwalb, N. K., Renth, F., & Temps, F. (2005). Femtosecond fluorescence up-conversion spectroscopy of adenine and adenosine: experimental evidence for the πσ* state? Chemical Physics, 313(1-3), 199-212. doi:10.1016/j.chemphys.2004.12.019 | es_ES |
dc.description.references | Cohen, B., Hare, P. M., & Kohler, B. (2003). Ultrafast Excited-State Dynamics of Adenine and Monomethylated Adenines in Solution: Implications for the Nonradiative Decay Mechanism. Journal of the American Chemical Society, 125(44), 13594-13601. doi:10.1021/ja035628z | es_ES |
dc.description.references | Gustavsson, T., Bányász, Á., Lazzarotto, E., Markovitsi, D., Scalmani, G., Frisch, M. J., … Improta, R. (2006). Singlet Excited-State Behavior of Uracil and Thymine in Aqueous Solution: A Combined Experimental and Computational Study of 11 Uracil Derivatives. Journal of the American Chemical Society, 128(2), 607-619. doi:10.1021/ja056181s | es_ES |
dc.description.references | Gustavsson, T., Sarkar, N., Lazzarotto, E., Markovitsi, D., Barone, V., & Improta, R. (2006). Solvent Effect on the Singlet Excited-state Dynamics of 5-Fluorouracil in Acetonitrile as Compared with Water. The Journal of Physical Chemistry B, 110(26), 12843-12847. doi:10.1021/jp062266j | es_ES |
dc.description.references | Gustavsson, T., Sarkar, N., Lazzarotto, E., Markovitsi, D., & Improta, R. (2006). Singlet excited state dynamics of uracil and thymine derivatives: A femtosecond fluorescence upconversion study in acetonitrile. Chemical Physics Letters, 429(4-6), 551-557. doi:10.1016/j.cplett.2006.08.058 | es_ES |
dc.description.references | Santoro, F., Barone, V., Gustavsson, T., & Improta, R. (2006). Solvent Effect on the Singlet Excited-State Lifetimes of Nucleic Acid Bases: A Computational Study of 5-Fluorouracil and Uracil in Acetonitrile and Water. Journal of the American Chemical Society, 128(50), 16312-16322. doi:10.1021/ja0657861 | es_ES |
dc.description.references | Gustavsson, T., Bányász, Á., Sarkar, N., Markovitsi, D., & Improta, R. (2008). Assessing solvent effects on the singlet excited state lifetime of uracil derivatives: A femtosecond fluorescence upconversion study in alcohols and D2O. Chemical Physics, 350(1-3), 186-192. doi:10.1016/j.chemphys.2008.02.032 | es_ES |
dc.description.references | Gustavsson, T., Sharonov, A., & Markovitsi, D. (2002). Thymine, thymidine and thymidine 5′-monophosphate studied by femtosecond fluorescence upconversion spectroscopy. Chemical Physics Letters, 351(3-4), 195-200. doi:10.1016/s0009-2614(01)01375-6 | es_ES |
dc.description.references | Adamo, C., & Barone, V. (1999). Toward reliable density functional methods without adjustable parameters: The PBE0 model. The Journal of Chemical Physics, 110(13), 6158-6170. doi:10.1063/1.478522 | es_ES |
dc.description.references | Zhao, Y., Schultz, N. E., & Truhlar, D. G. (2006). Design of Density Functionals by Combining the Method of Constraint Satisfaction with Parametrization for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions. Journal of Chemical Theory and Computation, 2(2), 364-382. doi:10.1021/ct0502763 | es_ES |
dc.description.references | Yanai, T., Tew, D. P., & Handy, N. C. (2004). A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chemical Physics Letters, 393(1-3), 51-57. doi:10.1016/j.cplett.2004.06.011 | es_ES |
dc.description.references | Jacquemin, D., Perpète, E. A., Ciofini, I., & Adamo, C. (2009). Accurate Simulation of Optical Properties in Dyes. Accounts of Chemical Research, 42(2), 326-334. doi:10.1021/ar800163d | es_ES |
dc.description.references | Bányász, A., Karpati, S., Mercier, Y., Reguero, M., Gustavsson, T., Markovitsi, D., & Improta, R. (2010). The Peculiar Spectral Properties of Amino-Substituted Uracils: A Combined Theoretical and Experimental Study. The Journal of Physical Chemistry B, 114(39), 12708-12719. doi:10.1021/jp105267q | es_ES |
dc.description.references | Santoro, F., Barone, V., & Improta, R. (2007). Influence of base stacking on excited-state behavior of polyadenine in water, based on time-dependent density functional calculations. Proceedings of the National Academy of Sciences, 104(24), 9931-9936. doi:10.1073/pnas.0703298104 | es_ES |
dc.description.references | Karunakaran, V., Kleinermanns, K., Improta, R., & Kovalenko, S. A. (2009). Photoinduced Dynamics of Guanosine Monophosphate in Water from Broad-Band Transient Absorption Spectroscopy and Quantum-Chemical Calculations. Journal of the American Chemical Society, 131(16), 5839-5850. doi:10.1021/ja810092k | es_ES |
dc.description.references | Improta, R. (2008). The excited states of π-stacked 9-methyladenine oligomers: a TD-DFT study in aqueous solution. Physical Chemistry Chemical Physics, 10(19), 2656. doi:10.1039/b718562f | es_ES |
dc.description.references | Santoro, F., Barone, V., & Improta, R. (2008). Absorption Spectrum of A-T DNA Unraveled by Quantum Mechanical Calculations in Solution on the (dA)2⋅(dT)2Tetramer. ChemPhysChem, 9(17), 2531-2537. doi:10.1002/cphc.200800617 | es_ES |
dc.description.references | Improta, R., & Barone, V. (2011). Interplay between «Neutral» and «Charge-Transfer» Excimers Rules the Excited State Decay in Adenine-Rich Polynucleotides. Angewandte Chemie International Edition, 50(50), 12016-12019. doi:10.1002/anie.201104382 | es_ES |
dc.description.references | Banyasz, A., Gustavsson, T., Onidas, D., Changenet-Barret, P., Markovitsi, D., & Improta, R. (2013). Multi-Pathway Excited State Relaxation of Adenine Oligomers in Aqueous Solution: A Joint Theoretical and Experimental Study. Chemistry - A European Journal, 19(11), 3762-3774. doi:10.1002/chem.201202741 | es_ES |
dc.description.references | Dargiewicz, M., Biczysko, M., Improta, R., & Barone, V. (2012). Solvent effects on electron-driven proton-transfer processes: adenine–thymine base pairs. Physical Chemistry Chemical Physics, 14(25), 8981. doi:10.1039/c2cp23890j | es_ES |
dc.description.references | Biemann, L., Kovalenko, S. A., Kleinermanns, K., Mahrwald, R., Markert, M., & Improta, R. (2011). Excited State Proton Transfer Is Not Involved in the Ultrafast Deactivation of Guanine–Cytosine Pair in Solution. Journal of the American Chemical Society, 133(49), 19664-19667. doi:10.1021/ja2089734 | es_ES |
dc.description.references | Tomasi, J., Mennucci, B., & Cammi, R. (2005). Quantum Mechanical Continuum Solvation Models. Chemical Reviews, 105(8), 2999-3094. doi:10.1021/cr9904009 | es_ES |
dc.description.references | Scalmani, G., Frisch, M. J., Mennucci, B., Tomasi, J., Cammi, R., & Barone, V. (2006). Geometries and properties of excited states in the gas phase and in solution: Theory and application of a time-dependent density functional theory polarizable continuum model. The Journal of Chemical Physics, 124(9), 094107. doi:10.1063/1.2173258 | es_ES |
dc.description.references | Improta, R., Barone, V., Scalmani, G., & Frisch, M. J. (2006). A state-specific polarizable continuum model time dependent density functional theory method for excited state calculations in solution. The Journal of Chemical Physics, 125(5), 054103. doi:10.1063/1.2222364 | es_ES |
dc.description.references | Improta, R., Scalmani, G., Frisch, M. J., & Barone, V. (2007). Toward effective and reliable fluorescence energies in solution by a new state specific polarizable continuum model time dependent density functional theory approach. The Journal of Chemical Physics, 127(7), 074504. doi:10.1063/1.2757168 | es_ES |
dc.description.references | Miannay, F.-A., Gustavsson, T., Banyasz, A., & Markovitsi, D. (2010). Excited-State Dynamics of dGMP Measured by Steady-State and Femtosecond Fluorescence Spectroscopy†. The Journal of Physical Chemistry A, 114(9), 3256-3263. doi:10.1021/jp909410b | es_ES |
dc.description.references | Avila Ferrer, F. J., Cerezo, J., Stendardo, E., Improta, R., & Santoro, F. (2013). Insights for an Accurate Comparison of Computational Data to Experimental Absorption and Emission Spectra: Beyond the Vertical Transition Approximation. Journal of Chemical Theory and Computation, 9(4), 2072-2082. doi:10.1021/ct301107m | es_ES |
dc.description.references | Cremer, D., & Pople, J. A. (1975). General definition of ring puckering coordinates. Journal of the American Chemical Society, 97(6), 1354-1358. doi:10.1021/ja00839a011 | es_ES |
dc.description.references | Cohen, B., Crespo-Hernández, C. E., & Kohler, B. (2004). Strickler–Berg analysis of excited singlet state dynamics in DNA and RNA nucleosides. Faraday Discuss., 127, 137-147. doi:10.1039/b316939a | es_ES |
dc.description.references | Improta, R., Barone, V., Lami, A., & Santoro, F. (2009). Quantum Dynamics of the Ultrafast ππ*/nπ* Population Transfer in Uracil and 5-Fluoro-Uracil in Water and Acetonitrile. The Journal of Physical Chemistry B, 113(43), 14491-14503. doi:10.1021/jp906524p | es_ES |
dc.description.references | Mercier, Y., Santoro, F., Reguero, M., & Improta, R. (2008). The Decay from the Dark nπ* Excited State in Uracil: An Integrated CASPT2/CASSCF and PCM/TD-DFT Study in the Gas Phase and in Water. The Journal of Physical Chemistry B, 112(35), 10769-10772. doi:10.1021/jp804785p | es_ES |