Rogner, H.-H. (1997). AN ASSESSMENT OF WORLD HYDROCARBON RESOURCES. Annual Review of Energy and the Environment, 22(1), 217-262. doi:10.1146/annurev.energy.22.1.217
Shafiee, S., & Topal, E. (2009). When will fossil fuel reserves be diminished? Energy Policy, 37(1), 181-189. doi:10.1016/j.enpol.2008.08.016
Edmonds, J., & Reilly, J. (1983). Global energy production and use to the year 2050. Energy, 8(6), 419-432. doi:10.1016/0360-5442(83)90064-6
[+]
Rogner, H.-H. (1997). AN ASSESSMENT OF WORLD HYDROCARBON RESOURCES. Annual Review of Energy and the Environment, 22(1), 217-262. doi:10.1146/annurev.energy.22.1.217
Shafiee, S., & Topal, E. (2009). When will fossil fuel reserves be diminished? Energy Policy, 37(1), 181-189. doi:10.1016/j.enpol.2008.08.016
Edmonds, J., & Reilly, J. (1983). Global energy production and use to the year 2050. Energy, 8(6), 419-432. doi:10.1016/0360-5442(83)90064-6
Olah, G. A. (2005). Beyond Oil and Gas: The Methanol Economy. Angewandte Chemie International Edition, 44(18), 2636-2639. doi:10.1002/anie.200462121
J. G. Speight , The chemistry and technology of petroleum, CRC Press, 2007
Masliyah, J., Zhou, Z. J., Xu, Z., Czarnecki, J., & Hamza, H. (2008). Understanding Water-Based Bitumen Extraction from Athabasca Oil Sands. The Canadian Journal of Chemical Engineering, 82(4), 628-654. doi:10.1002/cjce.5450820403
Degnan, T. F. (2003). The implications of the fundamentals of shape selectivity for the development of catalysts for the petroleum and petrochemical industries. Journal of Catalysis, 216(1-2), 32-46. doi:10.1016/s0021-9517(02)00105-7
Marcilly, C. R. (2000). Topics in Catalysis, 13(4), 357-366. doi:10.1023/a:1009007021975
Corma, A. (1997). From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis. Chemical Reviews, 97(6), 2373-2420. doi:10.1021/cr960406n
NEWSAM, J. M. (1986). The Zeolite Cage Structure. Science, 231(4742), 1093-1099. doi:10.1126/science.231.4742.1093
Cinar, S., & Beler-Baykal, B. (2005). Ion exchange with natural zeolites: an alternative for water softening? Water Science and Technology, 51(11), 71-77. doi:10.2166/wst.2005.0392
Erdem, E., Karapinar, N., & Donat, R. (2004). The removal of heavy metal cations by natural zeolites. Journal of Colloid and Interface Science, 280(2), 309-314. doi:10.1016/j.jcis.2004.08.028
Navalon, S., Alvaro, M., & Garcia, H. (2010). Heterogeneous Fenton catalysts based on clays, silicas and zeolites. Applied Catalysis B: Environmental, 99(1-2), 1-26. doi:10.1016/j.apcatb.2010.07.006
Yamane, I., & Nakazawa, T. (1986). Development of zeolite for non-phosphated detergents in Japan. Pure and Applied Chemistry, 58(10), 1397-1404. doi:10.1351/pac198658101397
Blanchard, G., Maunaye, M., & Martin, G. (1984). Removal of heavy metals from waters by means of natural zeolites. Water Research, 18(12), 1501-1507. doi:10.1016/0043-1354(84)90124-6
Cooper, E. R., Andrews, C. D., Wheatley, P. S., Webb, P. B., Wormald, P., & Morris, R. E. (2004). Ionic liquids and eutectic mixtures as solvent and template in synthesis of zeolite analogues. Nature, 430(7003), 1012-1016. doi:10.1038/nature02860
Corma, A., Fornés, V., Guil, J. ., Pergher, S., Maesen, T. L. ., & Buglass, J. . (2000). Preparation, characterisation and catalytic activity of ITQ-2, a delaminated zeolite. Microporous and Mesoporous Materials, 38(2-3), 301-309. doi:10.1016/s1387-1811(00)00149-9
Corma, A., Fornes, V., Pergher, S. B., Maesen, T. L. M., & Buglass, J. G. (1998). Delaminated zeolite precursors as selective acidic catalysts. Nature, 396(6709), 353-356. doi:10.1038/24592
J. Weitkamp , Handbook of heterogeneous catalysis, Gerhard Ertl, 2008
Corma, A. (1995). Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reactions. Chemical Reviews, 95(3), 559-614. doi:10.1021/cr00035a006
HIDALGO, C. (1984). Measurement of the acidity of various zeolites by temperature-programmed desorption of ammonia. Journal of Catalysis, 85(2), 362-369. doi:10.1016/0021-9517(84)90225-2
Kapustin, G. I., Brueva, T. R., Klyachko, A. L., Beran, S., & Wichterlova, B. (1988). Determination of the number and acid strength of acid sites in zeolites by ammonia adsorption. Applied Catalysis, 42(2), 239-246. doi:10.1016/0166-9834(88)80005-8
Corma, A., Fornés, V., Melo, F. V., & Herrero, J. (1987). Comparison of the information given by ammonia t.p.d. and pyridine adsorption—desorption on the acidity of dealuminated HY and LaHY zeolite cracking catalysts. Zeolites, 7(6), 559-563. doi:10.1016/0144-2449(87)90098-4
Corma, A., Fornes, V., Navarro, M. T., & Perezpariente, J. (1994). Acidity and Stability of MCM-41 Crystalline Aluminosilicates. Journal of Catalysis, 148(2), 569-574. doi:10.1006/jcat.1994.1243
Huang, J., Jiang, Y., Marthala, V. R. R., Bressel, A., Frey, J., & Hunger, M. (2009). Effect of pore size and acidity on the coke formation during ethylbenzene conversion on zeolite catalysts. Journal of Catalysis, 263(2), 277-283. doi:10.1016/j.jcat.2009.02.019
Corma, A. (2003). State of the art and future challenges of zeolites as catalysts. Journal of Catalysis, 216(1-2), 298-312. doi:10.1016/s0021-9517(02)00132-x
Márquez, F., García, H., Palomares, E., Fernández, L., & Corma, A. (2000). Spectroscopic Evidence in Support of the Molecular Orbital Confinement Concept: Case of Anthracene Incorporated in Zeolites. Journal of the American Chemical Society, 122(27), 6520-6521. doi:10.1021/ja0003066
Sastre, G., Cano, M. L., Corma, A., García, H., Nicolopoulos, S., González-Calbet, J. M., & Vallet-Regí, M. (1997). On the Incorporation of Buckminsterfullerene C60in the Supercages of Zeolite Y. The Journal of Physical Chemistry B, 101(49), 10184-10190. doi:10.1021/jp963883i
Bellussi, G., Pazzuconi, G., Perego, C., Girotti, G., & Terzoni, G. (1995). Liquid-Phase Alkylation of Benzene with Light Olefins Catalyzed by β-Zeolites. Journal of Catalysis, 157(1), 227-234. doi:10.1006/jcat.1995.1283
BIZREH, Y. (1984). Butane cracking catalyzed by the zeolite H-ZSM-5. Journal of Catalysis, 88(1), 240-243. doi:10.1016/0021-9517(84)90071-x
KRANNILA, H. (1992). Monomolecular and bimolecular mechanisms of paraffin cracking: n-butane cracking catalyzed by HZSM-5. Journal of Catalysis, 135(1), 115-124. doi:10.1016/0021-9517(92)90273-k
YOUNG, L. (1982). Shape selective reactions with zeolite catalysts III. Selectivity in xylene isomerization, toluene-methanol alkylation, and toluene disproportionation over ZSM-5 zeolite catalysts. Journal of Catalysis, 76(2), 418-432. doi:10.1016/0021-9517(82)90271-8
Haw, J. F. (2002). Zeolite acid strength and reaction mechanisms in catalysis. Phys. Chem. Chem. Phys., 4(22), 5431-5441. doi:10.1039/b206483a
Xu, T., Munson, E. J., & Haw, J. F. (1994). Toward a Systematic Chemistry of Organic Reactions in Zeolites: In situ NMR Studies of Ketones. Journal of the American Chemical Society, 116(5), 1962-1972. doi:10.1021/ja00084a041
S. V. Luis and E.Garcia-Verdugo, Chemical reactions and processes under flow conditions, 2010
Arribas, M. A., Márquez, F., & Martı&́nez, A. (2000). Activity, Selectivity, and Sulfur Resistance of Pt/WOx–ZrO2 and Pt/Beta Catalysts for the Simultaneous Hydroisomerization of n-Heptane and Hydrogenation of Benzene. Journal of Catalysis, 190(2), 309-319. doi:10.1006/jcat.2000.2768
Corma, A., & Martínez, A. (1993). Chemistry, Catalysts, and Processes for Isoparaffin–Olefin Alkylation: Actual Situation and Future Trends. Catalysis Reviews, 35(4), 483-570. doi:10.1080/01614949308013916
Boronat, M., Viruela, P., & Corma, A. (1999). Theoretical Study of Bimolecular Reactions between Carbenium Ions and Paraffins: The Proposal of a Common Intermediate for Hydride Transfer, Disproportionation, Dehydrogenation, and Alkylation. The Journal of Physical Chemistry B, 103(37), 7809-7821. doi:10.1021/jp990987v
Feller, A., & Lercher, J. A. (2004). Chemistry and Technology of Isobutane/Alkene Alkylation Catalyzed by Liquid and Solid Acids. Advances in Catalysis, 229-295. doi:10.1016/s0360-0564(04)48003-1
Corma, A. (2004). Different process schemes for converting light straight run and fluid catalytic cracking naphthas in a FCC unit for maximum propylene production. Applied Catalysis A: General, 265(2), 195-206. doi:10.1016/j.apcata.2004.01.020
Martínez, C., & Corma, A. (2011). Inorganic molecular sieves: Preparation, modification and industrial application in catalytic processes. Coordination Chemistry Reviews, 255(13-14), 1558-1580. doi:10.1016/j.ccr.2011.03.014
Chen, C.-Y., Li, H.-X., & Davis, M. E. (1993). Studies on mesoporous materials. Microporous Materials, 2(1), 17-26. doi:10.1016/0927-6513(93)80058-3
McVicker, G. (2002). Selective Ring Opening of Naphthenic Molecules. Journal of Catalysis, 210(1), 137-148. doi:10.1006/jcat.2002.3685
Calemma, V., Ferrari, M., Rabl, S., & Weitkamp, J. (2013). Selective ring opening of naphthenes: From mechanistic studies with a model feed to the upgrading of a hydrotreated light cycle oil. Fuel, 111, 763-770. doi:10.1016/j.fuel.2013.04.055
Raichle, A., Traa, Y., Fuder, F., Rupp, M., & Weitkamp, J. (2001). Haag-Dessau Catalysts for Ring Opening of Cycloalkanes. Angewandte Chemie International Edition, 40(7), 1243-1246. doi:10.1002/1521-3773(20010401)40:7<1243::aid-anie1243>3.0.co;2-7
[-]