- -

Zeolites as catalysts in oil refining

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by


El jueves 27 desde las 00 hasta 10:00 horas el sistema se apagará debido a tareas habituales de mantenimiento

Zeolites as catalysts in oil refining

Show full item record

Primo Arnau, AM.; García Gómez, H. (2014). Zeolites as catalysts in oil refining. Chemical Society Reviews. 43(22):7548-7561. doi:10.1039/C3CS60394F

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/57294

Files in this item

Item Metadata

Title: Zeolites as catalysts in oil refining
Author: Primo Arnau, Ana María García Gómez, Hermenegildo
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Universitat Politècnica de València. Departamento de Química - Departament de Química
Issued date:
[EN] Oil is nowadays the main energy source and this prevalent position most probably will continue in the next decades. This situation is largely due to the degree of maturity that has been achieved in oil refining and ...[+]
Subjects: Temperature-Programmed Desorption , Natural zeolites , Delaminated zeolites , Shape selectivity , Acid strength , Solid acids , Alkylation , Cracking , Chemistry , Ammonia
Copyrigths: Cerrado
Chemical Society Reviews. (issn: 0306-0012 ) (eissn: 1460-4744 )
DOI: 10.1039/C3CS60394F
Royal Society of Chemistry
Publisher version: http://dx.doi.org/10.1039/c3cs60394f
Project ID:
Financial support by the Spanish Ministry of Science and Competitiveness (Severo Ochoa and CTQ2012-32315) and Generalidad Valenciana (Prometeo 12/013) is gratefully acknowledged.
Type: Artículo


Rogner, H.-H. (1997). AN ASSESSMENT OF WORLD HYDROCARBON RESOURCES. Annual Review of Energy and the Environment, 22(1), 217-262. doi:10.1146/annurev.energy.22.1.217

Shafiee, S., & Topal, E. (2009). When will fossil fuel reserves be diminished? Energy Policy, 37(1), 181-189. doi:10.1016/j.enpol.2008.08.016

Edmonds, J., & Reilly, J. (1983). Global energy production and use to the year 2050. Energy, 8(6), 419-432. doi:10.1016/0360-5442(83)90064-6 [+]
Rogner, H.-H. (1997). AN ASSESSMENT OF WORLD HYDROCARBON RESOURCES. Annual Review of Energy and the Environment, 22(1), 217-262. doi:10.1146/annurev.energy.22.1.217

Shafiee, S., & Topal, E. (2009). When will fossil fuel reserves be diminished? Energy Policy, 37(1), 181-189. doi:10.1016/j.enpol.2008.08.016

Edmonds, J., & Reilly, J. (1983). Global energy production and use to the year 2050. Energy, 8(6), 419-432. doi:10.1016/0360-5442(83)90064-6

Olah, G. A. (2005). Beyond Oil and Gas: The Methanol Economy. Angewandte Chemie International Edition, 44(18), 2636-2639. doi:10.1002/anie.200462121

J. G. Speight , The chemistry and technology of petroleum, CRC Press, 2007

Masliyah, J., Zhou, Z. J., Xu, Z., Czarnecki, J., & Hamza, H. (2008). Understanding Water-Based Bitumen Extraction from Athabasca Oil Sands. The Canadian Journal of Chemical Engineering, 82(4), 628-654. doi:10.1002/cjce.5450820403

Degnan, T. F. (2003). The implications of the fundamentals of shape selectivity for the development of catalysts for the petroleum and petrochemical industries. Journal of Catalysis, 216(1-2), 32-46. doi:10.1016/s0021-9517(02)00105-7

Marcilly, C. R. (2000). Topics in Catalysis, 13(4), 357-366. doi:10.1023/a:1009007021975

Corma, A. (1997). From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis. Chemical Reviews, 97(6), 2373-2420. doi:10.1021/cr960406n

NEWSAM, J. M. (1986). The Zeolite Cage Structure. Science, 231(4742), 1093-1099. doi:10.1126/science.231.4742.1093

Cinar, S., & Beler-Baykal, B. (2005). Ion exchange with natural zeolites: an alternative for water softening? Water Science and Technology, 51(11), 71-77. doi:10.2166/wst.2005.0392

Erdem, E., Karapinar, N., & Donat, R. (2004). The removal of heavy metal cations by natural zeolites. Journal of Colloid and Interface Science, 280(2), 309-314. doi:10.1016/j.jcis.2004.08.028

Navalon, S., Alvaro, M., & Garcia, H. (2010). Heterogeneous Fenton catalysts based on clays, silicas and zeolites. Applied Catalysis B: Environmental, 99(1-2), 1-26. doi:10.1016/j.apcatb.2010.07.006

Yamane, I., & Nakazawa, T. (1986). Development of zeolite for non-phosphated detergents in Japan. Pure and Applied Chemistry, 58(10), 1397-1404. doi:10.1351/pac198658101397

Blanchard, G., Maunaye, M., & Martin, G. (1984). Removal of heavy metals from waters by means of natural zeolites. Water Research, 18(12), 1501-1507. doi:10.1016/0043-1354(84)90124-6

Cooper, E. R., Andrews, C. D., Wheatley, P. S., Webb, P. B., Wormald, P., & Morris, R. E. (2004). Ionic liquids and eutectic mixtures as solvent and template in synthesis of zeolite analogues. Nature, 430(7003), 1012-1016. doi:10.1038/nature02860

Corma, A., Fornés, V., Guil, J. ., Pergher, S., Maesen, T. L. ., & Buglass, J. . (2000). Preparation, characterisation and catalytic activity of ITQ-2, a delaminated zeolite. Microporous and Mesoporous Materials, 38(2-3), 301-309. doi:10.1016/s1387-1811(00)00149-9

Corma, A., Fornes, V., Pergher, S. B., Maesen, T. L. M., & Buglass, J. G. (1998). Delaminated zeolite precursors as selective acidic catalysts. Nature, 396(6709), 353-356. doi:10.1038/24592

J. Weitkamp , Handbook of heterogeneous catalysis, Gerhard Ertl, 2008

Corma, A. (1995). Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reactions. Chemical Reviews, 95(3), 559-614. doi:10.1021/cr00035a006

HIDALGO, C. (1984). Measurement of the acidity of various zeolites by temperature-programmed desorption of ammonia. Journal of Catalysis, 85(2), 362-369. doi:10.1016/0021-9517(84)90225-2

Kapustin, G. I., Brueva, T. R., Klyachko, A. L., Beran, S., & Wichterlova, B. (1988). Determination of the number and acid strength of acid sites in zeolites by ammonia adsorption. Applied Catalysis, 42(2), 239-246. doi:10.1016/0166-9834(88)80005-8

Corma, A., Fornés, V., Melo, F. V., & Herrero, J. (1987). Comparison of the information given by ammonia t.p.d. and pyridine adsorption—desorption on the acidity of dealuminated HY and LaHY zeolite cracking catalysts. Zeolites, 7(6), 559-563. doi:10.1016/0144-2449(87)90098-4

Corma, A., Fornes, V., Navarro, M. T., & Perezpariente, J. (1994). Acidity and Stability of MCM-41 Crystalline Aluminosilicates. Journal of Catalysis, 148(2), 569-574. doi:10.1006/jcat.1994.1243

Huang, J., Jiang, Y., Marthala, V. R. R., Bressel, A., Frey, J., & Hunger, M. (2009). Effect of pore size and acidity on the coke formation during ethylbenzene conversion on zeolite catalysts. Journal of Catalysis, 263(2), 277-283. doi:10.1016/j.jcat.2009.02.019

Corma, A. (2003). State of the art and future challenges of zeolites as catalysts. Journal of Catalysis, 216(1-2), 298-312. doi:10.1016/s0021-9517(02)00132-x

Márquez, F., García, H., Palomares, E., Fernández, L., & Corma, A. (2000). Spectroscopic Evidence in Support of the Molecular Orbital Confinement Concept:  Case of Anthracene Incorporated in Zeolites. Journal of the American Chemical Society, 122(27), 6520-6521. doi:10.1021/ja0003066

Sastre, G., Cano, M. L., Corma, A., García, H., Nicolopoulos, S., González-Calbet, J. M., & Vallet-Regí, M. (1997). On the Incorporation of Buckminsterfullerene C60in the Supercages of Zeolite Y. The Journal of Physical Chemistry B, 101(49), 10184-10190. doi:10.1021/jp963883i

Bellussi, G., Pazzuconi, G., Perego, C., Girotti, G., & Terzoni, G. (1995). Liquid-Phase Alkylation of Benzene with Light Olefins Catalyzed by β-Zeolites. Journal of Catalysis, 157(1), 227-234. doi:10.1006/jcat.1995.1283

BIZREH, Y. (1984). Butane cracking catalyzed by the zeolite H-ZSM-5. Journal of Catalysis, 88(1), 240-243. doi:10.1016/0021-9517(84)90071-x

KRANNILA, H. (1992). Monomolecular and bimolecular mechanisms of paraffin cracking: n-butane cracking catalyzed by HZSM-5. Journal of Catalysis, 135(1), 115-124. doi:10.1016/0021-9517(92)90273-k

YOUNG, L. (1982). Shape selective reactions with zeolite catalysts III. Selectivity in xylene isomerization, toluene-methanol alkylation, and toluene disproportionation over ZSM-5 zeolite catalysts. Journal of Catalysis, 76(2), 418-432. doi:10.1016/0021-9517(82)90271-8

Haw, J. F. (2002). Zeolite acid strength and reaction mechanisms in catalysis. Phys. Chem. Chem. Phys., 4(22), 5431-5441. doi:10.1039/b206483a

Xu, T., Munson, E. J., & Haw, J. F. (1994). Toward a Systematic Chemistry of Organic Reactions in Zeolites: In situ NMR Studies of Ketones. Journal of the American Chemical Society, 116(5), 1962-1972. doi:10.1021/ja00084a041

S. V. Luis and E.Garcia-Verdugo, Chemical reactions and processes under flow conditions, 2010

Arribas, M. A., Márquez, F., & Martı&́nez, A. (2000). Activity, Selectivity, and Sulfur Resistance of Pt/WOx–ZrO2 and Pt/Beta Catalysts for the Simultaneous Hydroisomerization of n-Heptane and Hydrogenation of Benzene. Journal of Catalysis, 190(2), 309-319. doi:10.1006/jcat.2000.2768

Corma, A., & Martínez, A. (1993). Chemistry, Catalysts, and Processes for Isoparaffin–Olefin Alkylation: Actual Situation and Future Trends. Catalysis Reviews, 35(4), 483-570. doi:10.1080/01614949308013916

Boronat, M., Viruela, P., & Corma, A. (1999). Theoretical Study of Bimolecular Reactions between Carbenium Ions and Paraffins:  The Proposal of a Common Intermediate for Hydride Transfer, Disproportionation, Dehydrogenation, and Alkylation. The Journal of Physical Chemistry B, 103(37), 7809-7821. doi:10.1021/jp990987v

Feller, A., & Lercher, J. A. (2004). Chemistry and Technology of Isobutane/Alkene Alkylation Catalyzed by Liquid and Solid Acids. Advances in Catalysis, 229-295. doi:10.1016/s0360-0564(04)48003-1

Corma, A. (2004). Different process schemes for converting light straight run and fluid catalytic cracking naphthas in a FCC unit for maximum propylene production. Applied Catalysis A: General, 265(2), 195-206. doi:10.1016/j.apcata.2004.01.020

Martínez, C., & Corma, A. (2011). Inorganic molecular sieves: Preparation, modification and industrial application in catalytic processes. Coordination Chemistry Reviews, 255(13-14), 1558-1580. doi:10.1016/j.ccr.2011.03.014

Chen, C.-Y., Li, H.-X., & Davis, M. E. (1993). Studies on mesoporous materials. Microporous Materials, 2(1), 17-26. doi:10.1016/0927-6513(93)80058-3

McVicker, G. (2002). Selective Ring Opening of Naphthenic Molecules. Journal of Catalysis, 210(1), 137-148. doi:10.1006/jcat.2002.3685

Calemma, V., Ferrari, M., Rabl, S., & Weitkamp, J. (2013). Selective ring opening of naphthenes: From mechanistic studies with a model feed to the upgrading of a hydrotreated light cycle oil. Fuel, 111, 763-770. doi:10.1016/j.fuel.2013.04.055

Raichle, A., Traa, Y., Fuder, F., Rupp, M., & Weitkamp, J. (2001). Haag-Dessau Catalysts for Ring Opening of Cycloalkanes. Angewandte Chemie International Edition, 40(7), 1243-1246. doi:10.1002/1521-3773(20010401)40:7<1243::aid-anie1243>3.0.co;2-7




This item appears in the following Collection(s)

Show full item record