- -

Zeolites as catalysts in oil refining

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Zeolites as catalysts in oil refining

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Primo Arnau, Ana María es_ES
dc.contributor.author García Gómez, Hermenegildo es_ES
dc.date.accessioned 2015-11-10T13:30:10Z
dc.date.available 2015-11-10T13:30:10Z
dc.date.issued 2014-11-21
dc.identifier.issn 0306-0012
dc.identifier.uri http://hdl.handle.net/10251/57294
dc.description.abstract [EN] Oil is nowadays the main energy source and this prevalent position most probably will continue in the next decades. This situation is largely due to the degree of maturity that has been achieved in oil refining and petrochemistry as a consequence of the large effort in research and innovation. The remarkable efficiency of oil refining is largely based on the use of zeolites as catalysts. The use of zeolites as catalysts in refining and petrochemistry has been considered as one of the major accomplishments in the chemistry of the XXth century. In this tutorial review, the introductory part describes the main features of zeolites in connection with their use as solid acids. The main body of the review describes important refining processes in which zeolites are used including light naphtha isomerization, olefin alkylation, reforming, cracking and hydrocracking. The final section contains our view on future developments in the field such as the increase in the quality of the transportation fuels and the coprocessing of increasing percentage of biofuels together with oil streams. This review is intended to provide the rudiments of zeolite science applied to refining catalysis. es_ES
dc.description.sponsorship Financial support by the Spanish Ministry of Science and Competitiveness (Severo Ochoa and CTQ2012-32315) and Generalidad Valenciana (Prometeo 12/013) is gratefully acknowledged.
dc.language Inglés es_ES
dc.publisher Royal Society of Chemistry es_ES
dc.relation.ispartof Chemical Society Reviews es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Temperature-Programmed Desorption es_ES
dc.subject Natural zeolites es_ES
dc.subject Delaminated zeolites es_ES
dc.subject Shape selectivity es_ES
dc.subject Acid strength es_ES
dc.subject Solid acids es_ES
dc.subject Alkylation es_ES
dc.subject Cracking es_ES
dc.subject Chemistry es_ES
dc.subject Ammonia es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Zeolites as catalysts in oil refining es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/C3CS60394F
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2012-32315/ES/REDUCCION FOTOCATALITICA DEL DIOXIDO DE CARBONO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2012%2F013/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Primo Arnau, AM.; García Gómez, H. (2014). Zeolites as catalysts in oil refining. Chemical Society Reviews. 43(22):7548-7561. https://doi.org/10.1039/C3CS60394F es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1039/c3cs60394f es_ES
dc.description.upvformatpinicio 7548 es_ES
dc.description.upvformatpfin 7561 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 43 es_ES
dc.description.issue 22 es_ES
dc.relation.senia 285587 es_ES
dc.identifier.eissn 1460-4744
dc.identifier.pmid 24671148
dc.contributor.funder Ministerio de Economía y Competitividad
dc.contributor.funder Generalitat Valenciana
dc.description.references Rogner, H.-H. (1997). AN ASSESSMENT OF WORLD HYDROCARBON RESOURCES. Annual Review of Energy and the Environment, 22(1), 217-262. doi:10.1146/annurev.energy.22.1.217 es_ES
dc.description.references Shafiee, S., & Topal, E. (2009). When will fossil fuel reserves be diminished? Energy Policy, 37(1), 181-189. doi:10.1016/j.enpol.2008.08.016 es_ES
dc.description.references Edmonds, J., & Reilly, J. (1983). Global energy production and use to the year 2050. Energy, 8(6), 419-432. doi:10.1016/0360-5442(83)90064-6 es_ES
dc.description.references Olah, G. A. (2005). Beyond Oil and Gas: The Methanol Economy. Angewandte Chemie International Edition, 44(18), 2636-2639. doi:10.1002/anie.200462121 es_ES
dc.description.references J. G. Speight , The chemistry and technology of petroleum, CRC Press, 2007 es_ES
dc.description.references Masliyah, J., Zhou, Z. J., Xu, Z., Czarnecki, J., & Hamza, H. (2008). Understanding Water-Based Bitumen Extraction from Athabasca Oil Sands. The Canadian Journal of Chemical Engineering, 82(4), 628-654. doi:10.1002/cjce.5450820403 es_ES
dc.description.references Degnan, T. F. (2003). The implications of the fundamentals of shape selectivity for the development of catalysts for the petroleum and petrochemical industries. Journal of Catalysis, 216(1-2), 32-46. doi:10.1016/s0021-9517(02)00105-7 es_ES
dc.description.references Marcilly, C. R. (2000). Topics in Catalysis, 13(4), 357-366. doi:10.1023/a:1009007021975 es_ES
dc.description.references Corma, A. (1997). From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis. Chemical Reviews, 97(6), 2373-2420. doi:10.1021/cr960406n es_ES
dc.description.references NEWSAM, J. M. (1986). The Zeolite Cage Structure. Science, 231(4742), 1093-1099. doi:10.1126/science.231.4742.1093 es_ES
dc.description.references Cinar, S., & Beler-Baykal, B. (2005). Ion exchange with natural zeolites: an alternative for water softening? Water Science and Technology, 51(11), 71-77. doi:10.2166/wst.2005.0392 es_ES
dc.description.references Erdem, E., Karapinar, N., & Donat, R. (2004). The removal of heavy metal cations by natural zeolites. Journal of Colloid and Interface Science, 280(2), 309-314. doi:10.1016/j.jcis.2004.08.028 es_ES
dc.description.references Navalon, S., Alvaro, M., & Garcia, H. (2010). Heterogeneous Fenton catalysts based on clays, silicas and zeolites. Applied Catalysis B: Environmental, 99(1-2), 1-26. doi:10.1016/j.apcatb.2010.07.006 es_ES
dc.description.references Yamane, I., & Nakazawa, T. (1986). Development of zeolite for non-phosphated detergents in Japan. Pure and Applied Chemistry, 58(10), 1397-1404. doi:10.1351/pac198658101397 es_ES
dc.description.references Blanchard, G., Maunaye, M., & Martin, G. (1984). Removal of heavy metals from waters by means of natural zeolites. Water Research, 18(12), 1501-1507. doi:10.1016/0043-1354(84)90124-6 es_ES
dc.description.references Cooper, E. R., Andrews, C. D., Wheatley, P. S., Webb, P. B., Wormald, P., & Morris, R. E. (2004). Ionic liquids and eutectic mixtures as solvent and template in synthesis of zeolite analogues. Nature, 430(7003), 1012-1016. doi:10.1038/nature02860 es_ES
dc.description.references Corma, A., Fornés, V., Guil, J. ., Pergher, S., Maesen, T. L. ., & Buglass, J. . (2000). Preparation, characterisation and catalytic activity of ITQ-2, a delaminated zeolite. Microporous and Mesoporous Materials, 38(2-3), 301-309. doi:10.1016/s1387-1811(00)00149-9 es_ES
dc.description.references Corma, A., Fornes, V., Pergher, S. B., Maesen, T. L. M., & Buglass, J. G. (1998). Delaminated zeolite precursors as selective acidic catalysts. Nature, 396(6709), 353-356. doi:10.1038/24592 es_ES
dc.description.references J. Weitkamp , Handbook of heterogeneous catalysis, Gerhard Ertl, 2008 es_ES
dc.description.references Corma, A. (1995). Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reactions. Chemical Reviews, 95(3), 559-614. doi:10.1021/cr00035a006 es_ES
dc.description.references HIDALGO, C. (1984). Measurement of the acidity of various zeolites by temperature-programmed desorption of ammonia. Journal of Catalysis, 85(2), 362-369. doi:10.1016/0021-9517(84)90225-2 es_ES
dc.description.references Kapustin, G. I., Brueva, T. R., Klyachko, A. L., Beran, S., & Wichterlova, B. (1988). Determination of the number and acid strength of acid sites in zeolites by ammonia adsorption. Applied Catalysis, 42(2), 239-246. doi:10.1016/0166-9834(88)80005-8 es_ES
dc.description.references Corma, A., Fornés, V., Melo, F. V., & Herrero, J. (1987). Comparison of the information given by ammonia t.p.d. and pyridine adsorption—desorption on the acidity of dealuminated HY and LaHY zeolite cracking catalysts. Zeolites, 7(6), 559-563. doi:10.1016/0144-2449(87)90098-4 es_ES
dc.description.references Corma, A., Fornes, V., Navarro, M. T., & Perezpariente, J. (1994). Acidity and Stability of MCM-41 Crystalline Aluminosilicates. Journal of Catalysis, 148(2), 569-574. doi:10.1006/jcat.1994.1243 es_ES
dc.description.references Huang, J., Jiang, Y., Marthala, V. R. R., Bressel, A., Frey, J., & Hunger, M. (2009). Effect of pore size and acidity on the coke formation during ethylbenzene conversion on zeolite catalysts. Journal of Catalysis, 263(2), 277-283. doi:10.1016/j.jcat.2009.02.019 es_ES
dc.description.references Corma, A. (2003). State of the art and future challenges of zeolites as catalysts. Journal of Catalysis, 216(1-2), 298-312. doi:10.1016/s0021-9517(02)00132-x es_ES
dc.description.references Márquez, F., García, H., Palomares, E., Fernández, L., & Corma, A. (2000). Spectroscopic Evidence in Support of the Molecular Orbital Confinement Concept:  Case of Anthracene Incorporated in Zeolites. Journal of the American Chemical Society, 122(27), 6520-6521. doi:10.1021/ja0003066 es_ES
dc.description.references Sastre, G., Cano, M. L., Corma, A., García, H., Nicolopoulos, S., González-Calbet, J. M., & Vallet-Regí, M. (1997). On the Incorporation of Buckminsterfullerene C60in the Supercages of Zeolite Y. The Journal of Physical Chemistry B, 101(49), 10184-10190. doi:10.1021/jp963883i es_ES
dc.description.references Bellussi, G., Pazzuconi, G., Perego, C., Girotti, G., & Terzoni, G. (1995). Liquid-Phase Alkylation of Benzene with Light Olefins Catalyzed by β-Zeolites. Journal of Catalysis, 157(1), 227-234. doi:10.1006/jcat.1995.1283 es_ES
dc.description.references BIZREH, Y. (1984). Butane cracking catalyzed by the zeolite H-ZSM-5. Journal of Catalysis, 88(1), 240-243. doi:10.1016/0021-9517(84)90071-x es_ES
dc.description.references KRANNILA, H. (1992). Monomolecular and bimolecular mechanisms of paraffin cracking: n-butane cracking catalyzed by HZSM-5. Journal of Catalysis, 135(1), 115-124. doi:10.1016/0021-9517(92)90273-k es_ES
dc.description.references YOUNG, L. (1982). Shape selective reactions with zeolite catalysts III. Selectivity in xylene isomerization, toluene-methanol alkylation, and toluene disproportionation over ZSM-5 zeolite catalysts. Journal of Catalysis, 76(2), 418-432. doi:10.1016/0021-9517(82)90271-8 es_ES
dc.description.references Haw, J. F. (2002). Zeolite acid strength and reaction mechanisms in catalysis. Phys. Chem. Chem. Phys., 4(22), 5431-5441. doi:10.1039/b206483a es_ES
dc.description.references Xu, T., Munson, E. J., & Haw, J. F. (1994). Toward a Systematic Chemistry of Organic Reactions in Zeolites: In situ NMR Studies of Ketones. Journal of the American Chemical Society, 116(5), 1962-1972. doi:10.1021/ja00084a041 es_ES
dc.description.references S. V. Luis and E.Garcia-Verdugo, Chemical reactions and processes under flow conditions, 2010 es_ES
dc.description.references Arribas, M. A., Márquez, F., & Martı&́nez, A. (2000). Activity, Selectivity, and Sulfur Resistance of Pt/WOx–ZrO2 and Pt/Beta Catalysts for the Simultaneous Hydroisomerization of n-Heptane and Hydrogenation of Benzene. Journal of Catalysis, 190(2), 309-319. doi:10.1006/jcat.2000.2768 es_ES
dc.description.references Corma, A., & Martínez, A. (1993). Chemistry, Catalysts, and Processes for Isoparaffin–Olefin Alkylation: Actual Situation and Future Trends. Catalysis Reviews, 35(4), 483-570. doi:10.1080/01614949308013916 es_ES
dc.description.references Boronat, M., Viruela, P., & Corma, A. (1999). Theoretical Study of Bimolecular Reactions between Carbenium Ions and Paraffins:  The Proposal of a Common Intermediate for Hydride Transfer, Disproportionation, Dehydrogenation, and Alkylation. The Journal of Physical Chemistry B, 103(37), 7809-7821. doi:10.1021/jp990987v es_ES
dc.description.references Feller, A., & Lercher, J. A. (2004). Chemistry and Technology of Isobutane/Alkene Alkylation Catalyzed by Liquid and Solid Acids. Advances in Catalysis, 229-295. doi:10.1016/s0360-0564(04)48003-1 es_ES
dc.description.references Corma, A. (2004). Different process schemes for converting light straight run and fluid catalytic cracking naphthas in a FCC unit for maximum propylene production. Applied Catalysis A: General, 265(2), 195-206. doi:10.1016/j.apcata.2004.01.020 es_ES
dc.description.references Martínez, C., & Corma, A. (2011). Inorganic molecular sieves: Preparation, modification and industrial application in catalytic processes. Coordination Chemistry Reviews, 255(13-14), 1558-1580. doi:10.1016/j.ccr.2011.03.014 es_ES
dc.description.references Chen, C.-Y., Li, H.-X., & Davis, M. E. (1993). Studies on mesoporous materials. Microporous Materials, 2(1), 17-26. doi:10.1016/0927-6513(93)80058-3 es_ES
dc.description.references McVicker, G. (2002). Selective Ring Opening of Naphthenic Molecules. Journal of Catalysis, 210(1), 137-148. doi:10.1006/jcat.2002.3685 es_ES
dc.description.references Calemma, V., Ferrari, M., Rabl, S., & Weitkamp, J. (2013). Selective ring opening of naphthenes: From mechanistic studies with a model feed to the upgrading of a hydrotreated light cycle oil. Fuel, 111, 763-770. doi:10.1016/j.fuel.2013.04.055 es_ES
dc.description.references Raichle, A., Traa, Y., Fuder, F., Rupp, M., & Weitkamp, J. (2001). Haag-Dessau Catalysts for Ring Opening of Cycloalkanes. Angewandte Chemie International Edition, 40(7), 1243-1246. doi:10.1002/1521-3773(20010401)40:7<1243::aid-anie1243>3.0.co;2-7 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem