Pendry, J. B. (2000). Negative Refraction Makes a Perfect Lens. Physical Review Letters, 85(18), 3966-3969. doi:10.1103/physrevlett.85.3966
Schurig, D., Mock, J. J., Justice, B. J., Cummer, S. A., Pendry, J. B., Starr, A. F., & Smith, D. R. (2006). Metamaterial Electromagnetic Cloak at Microwave Frequencies. Science, 314(5801), 977-980. doi:10.1126/science.1133628
Zhao, H., Zhou, J., Kang, L., & Zhao, Q. (2009). Tunable two-dimensional left-handed material consisting of ferrite rods and metallic wires. Optics Express, 17(16), 13373. doi:10.1364/oe.17.013373
[+]
Pendry, J. B. (2000). Negative Refraction Makes a Perfect Lens. Physical Review Letters, 85(18), 3966-3969. doi:10.1103/physrevlett.85.3966
Schurig, D., Mock, J. J., Justice, B. J., Cummer, S. A., Pendry, J. B., Starr, A. F., & Smith, D. R. (2006). Metamaterial Electromagnetic Cloak at Microwave Frequencies. Science, 314(5801), 977-980. doi:10.1126/science.1133628
Zhao, H., Zhou, J., Kang, L., & Zhao, Q. (2009). Tunable two-dimensional left-handed material consisting of ferrite rods and metallic wires. Optics Express, 17(16), 13373. doi:10.1364/oe.17.013373
Zhao, H., Kang, L., Zhou, J., Zhao, Q., Li, L., Peng, L., & Bai, Y. (2008). Experimental demonstration of tunable negative phase velocity and negative refraction in a ferromagnetic/ferroelectric composite metamaterial. Applied Physics Letters, 93(20), 201106. doi:10.1063/1.3033397
García-Miquel, H., Carbonell, J., Boria, V. E., & Sánchez-Dehesa, J. (2009). Experimental evidence of left handed transmission through arrays of ferromagnetic microwires. Applied Physics Letters, 94(5), 054103. doi:10.1063/1.3079673
Carbonell, J., García-Miquel, H., & Sánchez-Dehesa, J. (2010). Double negative metamaterials based on ferromagnetic microwires. Physical Review B, 81(2). doi:10.1103/physrevb.81.024401
García-Miquel, H., Carbonell, J., & Sánchez-Dehesa, J. (2010). Left handed material based on amorphous ferromagnetic microwires tunable by dc current. Applied Physics Letters, 97(9), 094102. doi:10.1063/1.3485055
Liberal, I., Ederra, I., Gomez-Polo, C., Labrador, A., Perez-Landazabal, J. I., & Gonzalo, R. (2011). Theoretical Modeling and Experimental Verification of the Scattering From a Ferromagnetic Microwire. IEEE Transactions on Microwave Theory and Techniques, 59(3), 517-526. doi:10.1109/tmtt.2010.2098037
Kittel, C. (1948). On the Theory of Ferromagnetic Resonance Absorption. Physical Review, 73(2), 155-161. doi:10.1103/physrev.73.155
Lofland, S. E., Bhagat, S. M., Ju, H. L., Xiong, G. C., Venkatesan, T., Greene, R. L., & Tyagi, S. (1996). Ferromagnetic resonance and intrinsic properties of La0.67Ba0.33MnOz. Journal of Applied Physics, 79(8), 5166. doi:10.1063/1.361857
Lofland, S. E., Garcia-Miquel, H., Vazquez, M., & Bhagat, S. M. (2002). Microwave magnetoabsorption in glass-coated amorphous microwires with radii close to skin depth. Journal of Applied Physics, 92(4), 2058-2063. doi:10.1063/1.1494847
Garcia-Miquel, H., Esbri, M. J., Andres, J. M., Garcia, J. M., Garcia-Beneytez, J. M., & Vazquez, M. (2001). Power absorption and ferromagnetic resonance in Co-rich metallic glasses. IEEE Transactions on Magnetics, 37(1), 561-564. doi:10.1109/20.914378
Kraus, L., Infante, G., Frait, Z., & Vázquez, M. (2011). Ferromagnetic resonance in microwires and nanowires. Physical Review B, 83(17). doi:10.1103/physrevb.83.174438
Kraus, L. (1982). Theory of ferromagnetic resonances in thin wires. Czechoslovak Journal of Physics, 32(11), 1264-1282. doi:10.1007/bf01597425
Ipatov, M., Chizhik, A., Zhukova, V., Gonzalez, J., & Zhukov, A. (2011). Correlation of surface domain structure and magneto-impedance in amorphous microwires. Journal of Applied Physics, 109(11), 113924. doi:10.1063/1.3596808
Kraus, L. (1999). Theory of giant magneto-impedance in the planar conductor with uniaxial magnetic anisotropy. Journal of Magnetism and Magnetic Materials, 195(3), 764-778. doi:10.1016/s0304-8853(99)00286-3
Garcı́a-Miquel, H., Garcı́a, J. ., Garcı́a-Beneytez, J. ., & Vázquez, M. (2001). Surface magnetic anisotropy in glass-coated amorphous microwires as determined from ferromagnetic resonance measurements. Journal of Magnetism and Magnetic Materials, 231(1), 38-44. doi:10.1016/s0304-8853(01)00040-3
[-]