Mostrar el registro sencillo del ítem
dc.contributor.author | Ramos Martínez, Eva | es_ES |
dc.contributor.author | Herrera Fernández, Antonio Manuel | es_ES |
dc.contributor.author | Izquierdo Sebastián, Joaquín | es_ES |
dc.contributor.author | Pérez García, Rafael | es_ES |
dc.date.accessioned | 2015-11-16T07:53:02Z | |
dc.date.available | 2015-11-16T07:53:02Z | |
dc.date.issued | 2014-03 | |
dc.identifier.issn | 0020-7160 | |
dc.identifier.uri | http://hdl.handle.net/10251/57493 | |
dc.description.abstract | [EN] Various studies have been performed in relation to the influence that a number of characteristics of drinking water distribution systems (DWDSs) have on biofilm development. Nevertheless, their joint influence, apart from a few exceptions, has scarcely been studied due to the complexity of the community and the environment. In this paper, we apply various machine learning algorithms based on naïve Bayesian networks. Alternatives for the base naïve Bayesian model to outperform individual performances while maintaining simplicity are suggested. These alternatives include augmentation of the arcs in the graph, and initial bagging approaches. Finally, a combination of different naïve approaches in a bagging process that produces explanatory hybrid decision trees is proposed. As a result, it is possible to achieve a deeper understanding of the consequences that the interaction of the relevant hydraulic and physical factors of DWDSs has on biofilm development. | es_ES |
dc.description.sponsorship | This work has been performed with the support of the project IDAWAS, DPI2009-11591 of the Direccion General de Investigacion del Ministerio de Ciencia e Innovacion (Spain) and ACOMP/2011/188 of the Conselleria de Educacio of the Generalitat Valenciana. We want to express our gratitude to the research grant (FPI), Ministerio de Ciencia e Innovacion (ref.: BES-2010-039145). The use of English in this paper was revised by John Rawlins. | |
dc.language | Inglés | es_ES |
dc.publisher | Taylor & Francis (Routledge): STM, Behavioural Science and Public Health Titles | es_ES |
dc.relation.ispartof | International Journal of Computer Mathematics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Drinking water distribution systems | es_ES |
dc.subject | Biofilm | es_ES |
dc.subject | Naïve Bayesian | es_ES |
dc.subject | Bagging | es_ES |
dc.subject | Ensemble methods | es_ES |
dc.subject.classification | ECOLOGIA | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.subject.classification | INGENIERIA HIDRAULICA | es_ES |
dc.title | Ensemble of naïve Bayesian approaches for the study of biofilm development in drinking water distribution systems | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1080/00207160.2013.808335 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//DPI2009-11591/ES/Aplicacion De Herramientas Del Analisis Inteligente De Datos En La Gestion Tecnica De Sistemas De Distribucion Y Evacuacion De Aguas/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//ACOMP%2F2011%2F188/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//BES-2010-039145/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Ramos Martínez, E.; Herrera Fernández, AM.; Izquierdo Sebastián, J.; Pérez García, R. (2014). Ensemble of naïve Bayesian approaches for the study of biofilm development in drinking water distribution systems. International Journal of Computer Mathematics. 91(1):135-146. https://doi.org/10.1080/00207160.2013.808335 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1080/00207160.2013.808335 | es_ES |
dc.description.upvformatpinicio | 135 | es_ES |
dc.description.upvformatpfin | 146 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 91 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.senia | 278184 | es_ES |
dc.identifier.eissn | 1029-0265 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | |
dc.contributor.funder | Generalitat Valenciana |