- -

Evolutionary continuous cellular automaton for the simulation of wet etching of quartz

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Evolutionary continuous cellular automaton for the simulation of wet etching of quartz

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ferrando Jódar, Néstor es_ES
dc.contributor.author Gosalvez Ayuso, Miguel Angel es_ES
dc.contributor.author Colom Palero, Ricardo José es_ES
dc.date.accessioned 2015-11-17T10:03:25Z
dc.date.available 2015-11-17T10:03:25Z
dc.date.issued 2012-02
dc.identifier.issn 0960-1317
dc.identifier.uri http://hdl.handle.net/10251/57592
dc.description.abstract Anisotropic wet chemical etching of quartz is a bulk micromachining process for the fabrication of micro-electro-mechanical systems (MEMS), such as resonators and temperature sensors. Despite the success of the continuous cellular automaton for the simulation of wet etching of silicon, the simulation of the same process for quartz has received little attention-especially from an atomistic perspective-resulting in a lack of accurate modeling tools. This paper analyzes the crystallographic structure of the main surface orientations of quartz and proposes a novel classification of the surface atoms as well as an evolutionary algorithm to determine suitable values for the corresponding atomistic removal rates. Not only does the presented evolutionary continuous cellular automaton reproduce the correct macroscopic etch rate distribution for quartz hemispheres, but it is also capable of performing fast and accurate 3D simulations of MEMS structures. This is shown by several comparisons between simulated and experimental results and, in particular, by a detailed, quantitative comparison for an extensive collection of trench profiles. © 2012 IOP Publishing Ltd. es_ES
dc.description.sponsorship We are grateful to D Cheng and K Sato (Nagoya University, Japan) for providing part of the experimental data. We acknowledge support by the JAE-Doc grant form the Junta para la Ampliacion de Estudios program co-funded by FSE, the Ramon y Cajal Fellowship Program by the Spanish Ministry of Science and Innovation, NANO-IKER Project (IE11-304) from the ETORTEK program by the Basque Government and the Professor Partnership Program by NVIDIA Corporation. en_EN
dc.language Inglés es_ES
dc.publisher IOP Publishing: Hybrid Open Access es_ES
dc.relation.ispartof Journal of Micromechanics and Microengineering es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject 3D simulations es_ES
dc.subject Accurate modeling es_ES
dc.subject Anisotropic wet chemical etching es_ES
dc.subject Bulk- micromachining es_ES
dc.subject Crystallographic structure es_ES
dc.subject Etch rate distribution es_ES
dc.subject MEMS-structure es_ES
dc.subject Quantitative comparison es_ES
dc.subject Removal rate es_ES
dc.subject Surface atoms es_ES
dc.subject Surface orientation es_ES
dc.subject Cellular automata es_ES
dc.subject Crystal atomic structure es_ES
dc.subject MEMS es_ES
dc.subject Quartz es_ES
dc.subject Wet etching es_ES
dc.subject Three dimensional computer graphics es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Evolutionary continuous cellular automaton for the simulation of wet etching of quartz es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1088/0960-1317/22/2/025021
dc.relation.projectID info:eu-repo/grantAgreement/Eusko Jaurlaritza//IE11-304/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Ferrando Jódar, N.; Gosalvez Ayuso, MA.; Colom Palero, RJ. (2012). Evolutionary continuous cellular automaton for the simulation of wet etching of quartz. Journal of Micromechanics and Microengineering. 22(2). https://doi.org/10.1088/0960-1317/22/2/025021 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1088/0960-1317/22/2/025021 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 22 es_ES
dc.description.issue 2 es_ES
dc.relation.senia 219404 es_ES
dc.identifier.eissn 1361-6439
dc.contributor.funder Eusko Jaurlaritza es_ES
dc.contributor.funder Consejo Superior de Investigaciones Científicas es_ES
dc.contributor.funder European Social Fund es_ES
dc.contributor.funder NVIDIA es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Hida, H., Shikida, M., Fukuzawa, K., Murakami, S., Sato, K., Asaumi, K., … Sato, K. (2008). Fabrication of a quartz tuning-fork probe with a sharp tip for AFM systems. Sensors and Actuators A: Physical, 148(1), 311-318. doi:10.1016/j.sna.2008.08.021 es_ES
dc.description.references Oh, H., Kim, G., Seo, H., Song, Y., Lee, K., & Yang, S. S. (2010). Fabrication of micro-lens array using quartz wet etching and polymer. Sensors and Actuators A: Physical, 164(1-2), 161-167. doi:10.1016/j.sna.2010.10.003 es_ES
dc.description.references Xing, Y., Gosálvez, M. A., & Sato, K. (2007). Step flow-based cellular automaton for the simulation of anisotropic etching of complex MEMS structures. New Journal of Physics, 9(12), 436-436. doi:10.1088/1367-2630/9/12/436 es_ES
dc.description.references Zhou, Z., Huang, Q., Li, W., & Deng, W. (2007). A cellular automaton-based simulator for silicon anisotropic etching processes considering high index planes. Journal of Micromechanics and Microengineering, 17(4), S38-S49. doi:10.1088/0960-1317/17/4/s03 es_ES
dc.description.references Gosalvez, M. A., Yan Xing, & Sato, K. (2008). Analytical Solution of the Continuous Cellular Automaton for Anisotropic Etching. Journal of Microelectromechanical Systems, 17(2), 410-431. doi:10.1109/jmems.2008.916339 es_ES
dc.description.references Zhou, Z., Huang, Q., & Li, W. (2009). Modeling and Simulations of Anisotropic Etching of Silicon in Alkaline Solutions with Experimental Verification. Journal of The Electrochemical Society, 156(2), F29. doi:10.1149/1.3031485 es_ES
dc.description.references Rangsten, P., Hedlund, C., Katardjiev, I. V., & Bäcklund, Y. (1998). Etch rates of crystallographic planes inZ-cut quartz - experiments and simulation. Journal of Micromechanics and Microengineering, 8(1), 1-6. doi:10.1088/0960-1317/8/1/001 es_ES
dc.description.references Tellier, C. R., & Leblois, T. G. (2000). Micromachining of quartz plates: determination of a database by combined stereographic analysis and 3-D simulation of etching shapes. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 47(5), 1204-1216. doi:10.1109/58.869067 es_ES
dc.description.references Hedlund, C., Lindberg, U., Bucht, U., & Soderkvist, J. (1993). Anisotropic etching of Z-cut quartz. Journal of Micromechanics and Microengineering, 3(2), 65-73. doi:10.1088/0960-1317/3/2/006 es_ES
dc.description.references Liang, J., Kohsaka, F., Matsuo, T., & Ueda, T. (2007). Wet Etched High Aspect Ratio Microstructures on Quartz for MEMS Applications. IEEJ Transactions on Sensors and Micromachines, 127(7), 337-342. doi:10.1541/ieejsmas.127.337 es_ES
dc.description.references Gosálvez, M. A., Xing, Y., Sato, K., & Nieminen, R. M. (2009). Discrete and continuous cellular automata for the simulation of propagating surfaces. Sensors and Actuators A: Physical, 155(1), 98-112. doi:10.1016/j.sna.2009.08.012 es_ES
dc.description.references Zhenjun Zhu, & Chang Liu. (2000). Micromachining process simulation using a continuous cellular automata method. Journal of Microelectromechanical Systems, 9(2), 252-261. doi:10.1109/84.846706 es_ES
dc.description.references Gosálvez, M. A., Xing, Y., Sato, K., & Nieminen, R. M. (2008). Atomistic methods for the simulation of evolving surfaces. Journal of Micromechanics and Microengineering, 18(5), 055029. doi:10.1088/0960-1317/18/5/055029 es_ES
dc.description.references Ferrando, N., Gosálvez, M. A., Cerdá, J., Gadea, R., & Sato, K. (2011). Octree-based, GPU implementation of a continuous cellular automaton for the simulation of complex, evolving surfaces. Computer Physics Communications, 182(3), 628-640. doi:10.1016/j.cpc.2010.11.004 es_ES
dc.description.references Mühlenbein, H., & Schlierkamp-Voosen, D. (1993). Predictive Models for the Breeder Genetic Algorithm I. Continuous Parameter Optimization. Evolutionary Computation, 1(1), 25-49. doi:10.1162/evco.1993.1.1.25 es_ES
dc.description.references Kohsaka, F., Liang, J., Matsuo, T., & Ueda, T. (2007). High Sensitive Tilt Sensor for Quartz Micromachining. IEEJ Transactions on Sensors and Micromachines, 127(10), 431-436. doi:10.1541/ieejsmas.127.431 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem