Mostrar el registro sencillo del ítem
dc.contributor.author | Martínez Franco, Raquel | es_ES |
dc.contributor.author | Moliner Marin, Manuel | es_ES |
dc.contributor.author | Thogersen, Joakim R. | es_ES |
dc.contributor.author | Corma Canós, Avelino | es_ES |
dc.date.accessioned | 2015-11-18T13:17:20Z | |
dc.date.issued | 2013-11 | |
dc.identifier.issn | 1867-3880 | |
dc.identifier.uri | http://hdl.handle.net/10251/57690 | |
dc.description.abstract | The cooperative use of the Cu-tetraethylenepentamine complex and N,N,N-trimethyl-1-adamantammonium as organic structure-directing agents (OSDAs) enabled the rationalized one-pot preparation of Cu-containing SSZ-13 zeolites. A detailed study of different synthetic variables permitted the control of the Si/Al and Cu/(Si+Al) ratios in the final solids. Cu-SSZ-13 molecular sieves synthesized in alkaline media demonstrate excellent catalytic activities and good hydrothermal stabilities for the selective catalytic reduction of NOx. Finally, the effect of synthesis media on the catalytic active sites is also demonstrated and a remarkable activity loss for samples synthesized in fluoride media is observed. | es_ES |
dc.description.sponsorship | This work has been supported by Haldor-Topsoe, the Spanish Government-MINECO (MAT2012-37160), Consolider Ingenio 2010-Multicat, and UPV through PAID-06-11 (n. 1952). M.M. also acknowledges the "Subprograma Ramon y Cajal" for the contract RYC-2011-08972. The Instituto de Tecnologia Quimica thanks the "Program Severo Ochoa" for financial support (SEV 2012 0267). The authors thank Isabel Millet for technical support. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Wiley-VCH Verlag | es_ES |
dc.relation.ispartof | ChemCatChem | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | copper | es_ES |
dc.subject | hydrothermal stability | es_ES |
dc.subject | nitrogen oxides | es_ES |
dc.subject | selective catalytic reduction | es_ES |
dc.subject | zeolites | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Efficient one-pot preparation of Cu-SSZ-13 materials using cooperative OSDAs for their catalytic applications in the SCR of NOx | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1002/cctc.201300141 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2012-37160/ES/SINTESIS DE NUEVOS MATERIALES MICROPOROSOS BASADOS EN EL USO DE ?ESPONJAS DE PROTONES? COMO AGENTES DIRECTORES DE ESTRUCTURA (ADES)/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CSD2009-00050/ES/Desarrollo de catalizadores más eficientes para el diseño de procesos químicos sostenibles y produccion limpia de energia/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-06-11-1952/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//RYC-2011-08972/ES/RYC-2011-08972/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SEV-2012-0267/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.description.bibliographicCitation | Martínez Franco, R.; Moliner Marin, M.; Thogersen, JR.; Corma Canós, A. (2013). Efficient one-pot preparation of Cu-SSZ-13 materials using cooperative OSDAs for their catalytic applications in the SCR of NOx. ChemCatChem. 5(11):3316-3323. https://doi.org/10.1002/cctc.201300141 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1002/cctc.201300141 | es_ES |
dc.description.upvformatpinicio | 3316 | es_ES |
dc.description.upvformatpfin | 3323 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 5 | es_ES |
dc.description.issue | 11 | es_ES |
dc.relation.senia | 258637 | es_ES |
dc.identifier.eissn | 1867-3899 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Haldor Topsøe | es_ES |
dc.description.references | MAES, A., & CREMERS, A. (1973). Transition-Metal Ion Exchange in Synthetic X and Y Zeolites. Molecular Sieves, 230-239. doi:10.1021/ba-1973-0121.ch020 | es_ES |
dc.description.references | Guczi, L., & Kiricsi, I. (1999). Zeolite supported mono- and bimetallic systems: structure and performance as CO hydrogenation catalysts. Applied Catalysis A: General, 186(1-2), 375-394. doi:10.1016/s0926-860x(99)00156-8 | es_ES |
dc.description.references | Li, X., & Iglesia, E. (2008). Pt/[Fe]ZSM-5 modified by Na and Cs cations: an active and selective catalyst for dehydrogenation of n-alkanes to n-alkenes. Chem. Commun., (5), 594-596. doi:10.1039/b715543c | es_ES |
dc.description.references | I. Bull U. Müller 2011 | es_ES |
dc.description.references | Iwamoto, M., Furukawa, H., Mine, Y., Uemura, F., Mikuriya, S., & Kagawa, S. (1986). Copper(II) ion-exchanged ZSM-5 zeolites as highly active catalysts for direct and continuous decomposition of nitrogen monoxide. Journal of the Chemical Society, Chemical Communications, (16), 1272. doi:10.1039/c39860001272 | es_ES |
dc.description.references | Modén, B., Da Costa, P., Fonfé, B., Lee, D. K., & Iglesia, E. (2002). Kinetics and Mechanism of Steady-State Catalytic NO Decomposition Reactions on Cu–ZSM5. Journal of Catalysis, 209(1), 75-86. doi:10.1006/jcat.2002.3622 | es_ES |
dc.description.references | Groothaert, M. H., van Bokhoven, J. A., Battiston, A. A., Weckhuysen, B. M., & Schoonheydt, R. A. (2003). Bis(μ-oxo)dicopper in Cu-ZSM-5 and Its Role in the Decomposition of NO: A Combined in Situ XAFS, UV−Vis−Near-IR, and Kinetic Study. Journal of the American Chemical Society, 125(25), 7629-7640. doi:10.1021/ja029684w | es_ES |
dc.description.references | MELIANCABRERA, I., ESPINOSA, S., GROEN, J., VDLINDEN, B., KAPTEIJN, F., & MOULIJN, J. (2006). Utilizing full-exchange capacity of zeolites by alkaline leaching: Preparation of Fe-ZSM5 and application in N2O decomposition. Journal of Catalysis, 238(2), 250-259. doi:10.1016/j.jcat.2005.11.034 | es_ES |
dc.description.references | Corma, A., Forne´s, V., & Palomares, E. (1997). Selective catalytic reduction of NOx on Cu-beta zeolites. Applied Catalysis B: Environmental, 11(2), 233-242. doi:10.1016/s0926-3373(96)00042-2 | es_ES |
dc.description.references | Corma, A., Palomares, A., & Márquez, F. (1997). Determining the Nature of the Active Sites of Cu-Beta Zeolites for the Selective Catalytic Reduction (SCR) of NOxby Using a Coupled Reaction-XAES/XPS Study. Journal of Catalysis, 170(1), 132-139. doi:10.1006/jcat.1997.1739 | es_ES |
dc.description.references | I. Bull R. S. Boorse W. M. Jaglowski G. S. Koermer A. Moini J. A. Patchett W. M. Xue P. Burk J. C. Dettling M. T. Caudle 2008 | es_ES |
dc.description.references | Kwak, J. H., Tonkyn, R. G., Kim, D. H., Szanyi, J., & Peden, C. H. F. (2010). Excellent activity and selectivity of Cu-SSZ-13 in the selective catalytic reduction of NOx with NH3. Journal of Catalysis, 275(2), 187-190. doi:10.1016/j.jcat.2010.07.031 | es_ES |
dc.description.references | Korhonen, S. T., Fickel, D. W., Lobo, R. F., Weckhuysen, B. M., & Beale, A. M. (2011). Isolated Cu2+ions: active sites for selective catalytic reduction of NO. Chem. Commun., 47(2), 800-802. doi:10.1039/c0cc04218h | es_ES |
dc.description.references | Moliner, M., Franch, C., Palomares, E., Grill, M., & Corma, A. (2012). Cu–SSZ-39, an active and hydrothermally stable catalyst for the selective catalytic reduction of NOx. Chemical Communications, 48(66), 8264. doi:10.1039/c2cc33992g | es_ES |
dc.description.references | Baik, J. H., Yim, S. D., Nam, I.-S., Mok, Y. S., Lee, J.-H., Cho, B. K., & Oh, S. H. (2004). Control of NOxEmissions from Diesel Engine by Selective Catalytic Reduction (SCR) with Urea. Topics in Catalysis, 30/31, 37-41. doi:10.1023/b:toca.0000029725.88068.97 | es_ES |
dc.description.references | Fickel, D. W., & Lobo, R. F. (2009). Copper Coordination in Cu-SSZ-13 and Cu-SSZ-16 Investigated by Variable-Temperature XRD. The Journal of Physical Chemistry C, 114(3), 1633-1640. doi:10.1021/jp9105025 | es_ES |
dc.description.references | Hun Kwak, J., Zhu, H., Lee, J. H., Peden, C. H. F., & Szanyi, J. (2012). Two different cationic positions in Cu-SSZ-13? Chemical Communications, 48(39), 4758. doi:10.1039/c2cc31184d | es_ES |
dc.description.references | Kwak, J. H., Tran, D., Szanyi, J., Peden, C. H. F., & Lee, J. H. (2012). The Effect of Copper Loading on the Selective Catalytic Reduction of Nitric Oxide by Ammonia Over Cu-SSZ-13. Catalysis Letters, 142(3), 295-301. doi:10.1007/s10562-012-0771-y | es_ES |
dc.description.references | N. Trukhan U. Mueller I. Bull 2011 | es_ES |
dc.description.references | REN, L., ZHANG, Y., ZENG, S., ZHU, L., SUN, Q., ZHANG, H., … XIAO, F.-S. (2012). Design and Synthesis of a Catalytically Active Cu-SSZ-13 Zeolite from a Copper-Amine Complex Template. Chinese Journal of Catalysis, 33(1), 92-105. doi:10.1016/s1872-2067(10)60280-x | es_ES |
dc.description.references | Deka, U., Lezcano-Gonzalez, I., Warrender, S. J., Lorena Picone, A., Wright, P. A., Weckhuysen, B. M., & Beale, A. M. (2013). Changing active sites in Cu–CHA catalysts: deNOx selectivity as a function of the preparation method. Microporous and Mesoporous Materials, 166, 144-152. doi:10.1016/j.micromeso.2012.04.056 | es_ES |
dc.description.references | Martínez-Franco, R., Moliner, M., Franch, C., Kustov, A., & Corma, A. (2012). Rational direct synthesis methodology of very active and hydrothermally stable Cu-SAPO-34 molecular sieves for the SCR of NOx. Applied Catalysis B: Environmental, 127, 273-280. doi:10.1016/j.apcatb.2012.08.034 | es_ES |
dc.description.references | S. I. Zones 1985 | es_ES |
dc.description.references | Díaz-Cabañas, M.-J., & Barrett, P. A. (1998). Synthesis and structure of pure SiO2 chabazite: the SiO2 polymorph with the lowest framework density. Chemical Communications, (17), 1881-1882. doi:10.1039/a804800b | es_ES |
dc.description.references | Oliva, C., Selli, E., Ponti, A., Correale, L., Solinas, V., Rombi, E., … Forni, L. (1997). FTIR and EPR characterisation of copper-exchanged mordenites and beta zeolites. Journal of the Chemical Society, Faraday Transactions, 93(15), 2603-2608. doi:10.1039/a701477e | es_ES |