MAES, A., & CREMERS, A. (1973). Transition-Metal Ion Exchange in Synthetic X and Y Zeolites. Molecular Sieves, 230-239. doi:10.1021/ba-1973-0121.ch020
Guczi, L., & Kiricsi, I. (1999). Zeolite supported mono- and bimetallic systems: structure and performance as CO hydrogenation catalysts. Applied Catalysis A: General, 186(1-2), 375-394. doi:10.1016/s0926-860x(99)00156-8
Li, X., & Iglesia, E. (2008). Pt/[Fe]ZSM-5 modified by Na and Cs cations: an active and selective catalyst for dehydrogenation of n-alkanes to n-alkenes. Chem. Commun., (5), 594-596. doi:10.1039/b715543c
[+]
MAES, A., & CREMERS, A. (1973). Transition-Metal Ion Exchange in Synthetic X and Y Zeolites. Molecular Sieves, 230-239. doi:10.1021/ba-1973-0121.ch020
Guczi, L., & Kiricsi, I. (1999). Zeolite supported mono- and bimetallic systems: structure and performance as CO hydrogenation catalysts. Applied Catalysis A: General, 186(1-2), 375-394. doi:10.1016/s0926-860x(99)00156-8
Li, X., & Iglesia, E. (2008). Pt/[Fe]ZSM-5 modified by Na and Cs cations: an active and selective catalyst for dehydrogenation of n-alkanes to n-alkenes. Chem. Commun., (5), 594-596. doi:10.1039/b715543c
I. Bull U. Müller 2011
Iwamoto, M., Furukawa, H., Mine, Y., Uemura, F., Mikuriya, S., & Kagawa, S. (1986). Copper(II) ion-exchanged ZSM-5 zeolites as highly active catalysts for direct and continuous decomposition of nitrogen monoxide. Journal of the Chemical Society, Chemical Communications, (16), 1272. doi:10.1039/c39860001272
Modén, B., Da Costa, P., Fonfé, B., Lee, D. K., & Iglesia, E. (2002). Kinetics and Mechanism of Steady-State Catalytic NO Decomposition Reactions on Cu–ZSM5. Journal of Catalysis, 209(1), 75-86. doi:10.1006/jcat.2002.3622
Groothaert, M. H., van Bokhoven, J. A., Battiston, A. A., Weckhuysen, B. M., & Schoonheydt, R. A. (2003). Bis(μ-oxo)dicopper in Cu-ZSM-5 and Its Role in the Decomposition of NO: A Combined in Situ XAFS, UV−Vis−Near-IR, and Kinetic Study. Journal of the American Chemical Society, 125(25), 7629-7640. doi:10.1021/ja029684w
MELIANCABRERA, I., ESPINOSA, S., GROEN, J., VDLINDEN, B., KAPTEIJN, F., & MOULIJN, J. (2006). Utilizing full-exchange capacity of zeolites by alkaline leaching: Preparation of Fe-ZSM5 and application in N2O decomposition. Journal of Catalysis, 238(2), 250-259. doi:10.1016/j.jcat.2005.11.034
Corma, A., Forne´s, V., & Palomares, E. (1997). Selective catalytic reduction of NOx on Cu-beta zeolites. Applied Catalysis B: Environmental, 11(2), 233-242. doi:10.1016/s0926-3373(96)00042-2
Corma, A., Palomares, A., & Márquez, F. (1997). Determining the Nature of the Active Sites of Cu-Beta Zeolites for the Selective Catalytic Reduction (SCR) of NOxby Using a Coupled Reaction-XAES/XPS Study. Journal of Catalysis, 170(1), 132-139. doi:10.1006/jcat.1997.1739
I. Bull R. S. Boorse W. M. Jaglowski G. S. Koermer A. Moini J. A. Patchett W. M. Xue P. Burk J. C. Dettling M. T. Caudle 2008
Kwak, J. H., Tonkyn, R. G., Kim, D. H., Szanyi, J., & Peden, C. H. F. (2010). Excellent activity and selectivity of Cu-SSZ-13 in the selective catalytic reduction of NOx with NH3. Journal of Catalysis, 275(2), 187-190. doi:10.1016/j.jcat.2010.07.031
Korhonen, S. T., Fickel, D. W., Lobo, R. F., Weckhuysen, B. M., & Beale, A. M. (2011). Isolated Cu2+ions: active sites for selective catalytic reduction of NO. Chem. Commun., 47(2), 800-802. doi:10.1039/c0cc04218h
Moliner, M., Franch, C., Palomares, E., Grill, M., & Corma, A. (2012). Cu–SSZ-39, an active and hydrothermally stable catalyst for the selective catalytic reduction of NOx. Chemical Communications, 48(66), 8264. doi:10.1039/c2cc33992g
Baik, J. H., Yim, S. D., Nam, I.-S., Mok, Y. S., Lee, J.-H., Cho, B. K., & Oh, S. H. (2004). Control of NOxEmissions from Diesel Engine by Selective Catalytic Reduction (SCR) with Urea. Topics in Catalysis, 30/31, 37-41. doi:10.1023/b:toca.0000029725.88068.97
Fickel, D. W., & Lobo, R. F. (2009). Copper Coordination in Cu-SSZ-13 and Cu-SSZ-16 Investigated by Variable-Temperature XRD. The Journal of Physical Chemistry C, 114(3), 1633-1640. doi:10.1021/jp9105025
Hun Kwak, J., Zhu, H., Lee, J. H., Peden, C. H. F., & Szanyi, J. (2012). Two different cationic positions in Cu-SSZ-13? Chemical Communications, 48(39), 4758. doi:10.1039/c2cc31184d
Kwak, J. H., Tran, D., Szanyi, J., Peden, C. H. F., & Lee, J. H. (2012). The Effect of Copper Loading on the Selective Catalytic Reduction of Nitric Oxide by Ammonia Over Cu-SSZ-13. Catalysis Letters, 142(3), 295-301. doi:10.1007/s10562-012-0771-y
N. Trukhan U. Mueller I. Bull 2011
REN, L., ZHANG, Y., ZENG, S., ZHU, L., SUN, Q., ZHANG, H., … XIAO, F.-S. (2012). Design and Synthesis of a Catalytically Active Cu-SSZ-13 Zeolite from a Copper-Amine Complex Template. Chinese Journal of Catalysis, 33(1), 92-105. doi:10.1016/s1872-2067(10)60280-x
Deka, U., Lezcano-Gonzalez, I., Warrender, S. J., Lorena Picone, A., Wright, P. A., Weckhuysen, B. M., & Beale, A. M. (2013). Changing active sites in Cu–CHA catalysts: deNOx selectivity as a function of the preparation method. Microporous and Mesoporous Materials, 166, 144-152. doi:10.1016/j.micromeso.2012.04.056
Martínez-Franco, R., Moliner, M., Franch, C., Kustov, A., & Corma, A. (2012). Rational direct synthesis methodology of very active and hydrothermally stable Cu-SAPO-34 molecular sieves for the SCR of NOx. Applied Catalysis B: Environmental, 127, 273-280. doi:10.1016/j.apcatb.2012.08.034
S. I. Zones 1985
Díaz-Cabañas, M.-J., & Barrett, P. A. (1998). Synthesis and structure of pure SiO2 chabazite: the SiO2 polymorph with the lowest framework density. Chemical Communications, (17), 1881-1882. doi:10.1039/a804800b
Oliva, C., Selli, E., Ponti, A., Correale, L., Solinas, V., Rombi, E., … Forni, L. (1997). FTIR and EPR characterisation of copper-exchanged mordenites and beta zeolites. Journal of the Chemical Society, Faraday Transactions, 93(15), 2603-2608. doi:10.1039/a701477e
[-]