- -

Reflective arrayed waveguide gratings based on Sagnac loop reflectors with custom spectral response

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Reflective arrayed waveguide gratings based on Sagnac loop reflectors with custom spectral response

Mostrar el registro completo del ítem

Gargallo Jaquotot, BA.; Muñoz Muñoz, P.; Baños López, R.; Giesecke, AL.; Bolten, J.; Wahlbrink, T.; Kleinjans, H. (2014). Reflective arrayed waveguide gratings based on Sagnac loop reflectors with custom spectral response. Optics Express. 22(12):14348-14362. https://doi.org/10.1364/OE.22.014348

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/57710

Ficheros en el ítem

Metadatos del ítem

Título: Reflective arrayed waveguide gratings based on Sagnac loop reflectors with custom spectral response
Autor: Gargallo Jaquotot, Bernardo Andrés Muñoz Muñoz, Pascual Baños López, Rocío Giesecke, Anna Lena Bolten, Jens Wahlbrink, Thorsten Kleinjans, Herbert
Entidad UPV: Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia
Fecha difusión:
Resumen:
In this paper, a model for the analysis and design of a reflective Arrayed Waveguide Grating is presented. The device consists of one half of a regular AWG where each arm waveguide in the array is terminated with a phase ...[+]
Palabras clave: Paraxial wave optics , Integrated optics devices , Wavelength filtering devices , Diffraction gratings
Derechos de uso: Reserva de todos los derechos
Fuente:
Optics Express. (eissn: 1094-4087 )
DOI: 10.1364/OE.22.014348
Editorial:
Optical Society of America: Open Access Journals
Versión del editor: http://dx.doi.org/10.1364/OE.22.014348
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//TEC2010-21337/ES/ADVANCE TOWARDS A MONOLITHICALLY INTEGRATED COHERENT TRANSCEIVER/
info:eu-repo/grantAgreement/MINECO//TEC2013-42332-P/ES/PHOTONIC INTEGRATED FILTERS FOR ENHANCED SIGNAL PROCESSING/
info:eu-repo/grantAgreement/MICINN//BES-2011-046100/ES/BES-2011-046100/
info:eu-repo/grantAgreement/UPV//UPVOV 08-3E-008/
info:eu-repo/grantAgreement/UPV//UPVOV 10-3E-492/
Descripción: © 2014 Optical Society of America. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibited
Agradecimientos:
The authors acknowledge financial support by the Spanish MINECO projects TEC2010-21337, TEC2013-42332-P; FEDER UPVOV 10-3E-492 and UPVOV 08-3E-008. B. Gargallo acknowledges financial support through FPI grant BES-2011-046100. ...[+]
Tipo: Artículo

References

Brackett, C. A. (1990). Dense wavelength division multiplexing networks: principles and applications. IEEE Journal on Selected Areas in Communications, 8(6), 948-964. doi:10.1109/49.57798

Kirchain, R., & Kimerling, L. (2007). A roadmap for nanophotonics. Nature Photonics, 1(6), 303-305. doi:10.1038/nphoton.2007.84

Pennings, E., Khoe, G.-D., Smit, M. K., & Staring, T. (1996). Integrated-optic versus microoptic devices for fiber-optic telecommunication systems: a comparison. IEEE Journal of Selected Topics in Quantum Electronics, 2(2), 151-164. doi:10.1109/2944.577349 [+]
Brackett, C. A. (1990). Dense wavelength division multiplexing networks: principles and applications. IEEE Journal on Selected Areas in Communications, 8(6), 948-964. doi:10.1109/49.57798

Kirchain, R., & Kimerling, L. (2007). A roadmap for nanophotonics. Nature Photonics, 1(6), 303-305. doi:10.1038/nphoton.2007.84

Pennings, E., Khoe, G.-D., Smit, M. K., & Staring, T. (1996). Integrated-optic versus microoptic devices for fiber-optic telecommunication systems: a comparison. IEEE Journal of Selected Topics in Quantum Electronics, 2(2), 151-164. doi:10.1109/2944.577349

Smit, M. K., & Van Dam, C. (1996). PHASAR-based WDM-devices: Principles, design and applications. IEEE Journal of Selected Topics in Quantum Electronics, 2(2), 236-250. doi:10.1109/2944.577370

Dragone, C., Edwards, C. A., & Kistler, R. C. (1991). Integrated optics N*N multiplexer on silicon. IEEE Photonics Technology Letters, 3(10), 896-899. doi:10.1109/68.93254

Lycett, R. J., Gallagher, D. F. G., & Brulis, V. J. (2013). Perfect Chirped Echelle Grating Wavelength Multiplexor: Design and Optimization. IEEE Photonics Journal, 5(2), 2400123-2400123. doi:10.1109/jphot.2013.2251874

Ryckeboer, E., Gassenq, A., Muneeb, M., Hattasan, N., Pathak, S., Cerutti, L., … Roelkens, G. (2013). Silicon-on-insulator spectrometers with integrated GaInAsSb photodiodes for wide-band spectroscopy from 1510 to 2300 nm. Optics Express, 21(5), 6101. doi:10.1364/oe.21.006101

Pruessner, M. W., Stievater, T. H., & Rabinovich, W. S. (2007). Integrated waveguide Fabry-Perot microcavities with silicon/air Bragg mirrors. Optics Letters, 32(5), 533. doi:10.1364/ol.32.000533

De Peralta, L. G., Bernussi, A. A., Frisbie, S., Gale, R., & Temkin, H. (2003). Reflective arrayed waveguide grating multiplexer. IEEE Photonics Technology Letters, 15(10), 1398-1400. doi:10.1109/lpt.2003.818223

Inoue, Y., Himeno, A., Moriwaki, K., & Kawachi, M. (1995). Silica-based arrayed-waveguide grating circuit as optical splitter/router. Electronics Letters, 31(9), 726. doi:10.1049/el:19950497

Soole, J. B. D., Amersfoort, M. R., LeBlanc, H. P., Rajhel, A., Caneau, C., Youtsey, C., & Adesida, I. (1996). Compact polarisation independent InP reflective arrayed waveguide grating filter. Electronics Letters, 32(19), 1769. doi:10.1049/el:19961212

Dai, D., Fu, X., Shi, Y., & He, S. (2010). Experimental demonstration of an ultracompact Si-nanowire-based reflective arrayed-waveguide grating (de)multiplexer with photonic crystal reflectors. Optics Letters, 35(15), 2594. doi:10.1364/ol.35.002594

Tsai, J.-C., Huang, S., Hah, D., Toshiyoshi, H., & Wu, M. C. (2004). Open-Loop Operation of MEMS-Based<tex>$1,times N$</tex>Wavelength-Selective Switch With Long-Term Stability and Repeatability. IEEE Photonics Technology Letters, 16(4), 1041-1043. doi:10.1109/lpt.2004.824652

Okamoto, K., & Ishida, K. (2013). Fabrication of silicon reflection-type arrayed-waveguide gratings with distributed Bragg reflectors. Optics Letters, 38(18), 3530. doi:10.1364/ol.38.003530

Okamoto, K., & Yamada, H. (1995). Arrayed-waveguide grating multiplexer with flat spectral response. Optics Letters, 20(1), 43. doi:10.1364/ol.20.000043

Doerr, C. R., Zhang, L., & Winzer, P. J. (2011). Monolithic InP Multiwavelength Coherent Receiver Using a Chirped Arrayed Waveguide Grating. Journal of Lightwave Technology, 29(4), 536-541. doi:10.1109/jlt.2010.2097240

Munoz, P., Pastor, D., & Capmany, J. (2002). Modeling and design of arrayed waveguide gratings. Journal of Lightwave Technology, 20(4), 661-674. doi:10.1109/50.996587

Jinguji, K., Takato, N., Hida, Y., Kitoh, T., & Kawachi, M. (1996). Two-port optical wavelength circuits composed of cascaded Mach-Zehnder interferometers with point-symmetrical configurations. Journal of Lightwave Technology, 14(10), 2301-2310. doi:10.1109/50.541222

Soldano, L. B., & Pennings, E. C. M. (1995). Optical multi-mode interference devices based on self-imaging: principles and applications. Journal of Lightwave Technology, 13(4), 615-627. doi:10.1109/50.372474

Bachmann, M., Besse, P. A., & Melchior, H. (1994). General self-imaging properties in N × N multimode interference couplers including phase relations. Applied Optics, 33(18), 3905. doi:10.1364/ao.33.003905

Besse, P. A., Gini, E., Bachmann, M., & Melchior, H. (1996). New 2×2 and 1×3 multimode interference couplers with free selection of power splitting ratios. Journal of Lightwave Technology, 14(10), 2286-2293. doi:10.1109/50.541220

Leuthold, J., & Joyner, C. W. (2001). Multimode interference couplers with tunable power splitting ratios. Journal of Lightwave Technology, 19(5), 700-707. doi:10.1109/50.923483

Seok-Hwan Jeong, & Morito, K. (2010). Novel Optical 90$^{\circ}$ Hybrid Consisting of a Paired Interference Based 2$\,\times\,$4 MMI Coupler, a Phase Shifter and a 2$\,\times\,$2 MMI Coupler. Journal of Lightwave Technology, 28(9), 1323-1331. doi:10.1109/jlt.2010.2042278

Talahashi, H., Oda, K., Toba, H., & Inoue, Y. (1995). Transmission characteristics of arrayed waveguide N×N wavelength multiplexer. Journal of Lightwave Technology, 13(3), 447-455. doi:10.1109/50.372441

Munoz, P., Pastor, D., Capmany, J., Ortega, D., Pujol, A., & Bonar, J. R. (2004). AWG Model Validation Through Measurement of Fabricated Devices. Journal of Lightwave Technology, 22(12), 2763-2777. doi:10.1109/jlt.2004.833275

Kleijn, E., Smit, M. K., & Leijtens, X. J. M. (2013). New Analytical Arrayed Waveguide Grating Model. Journal of Lightwave Technology, 31(20), 3309-3314. doi:10.1109/jlt.2013.2281612

Bogaerts, W., Dumon, P., Thourhout, D. V., Taillaert, D., Jaenen, P., Wouters, J., … Baets, R. G. (2006). Compact Wavelength-Selective Functions in Silicon-on-Insulator Photonic Wires. IEEE Journal of Selected Topics in Quantum Electronics, 12(6), 1394-1401. doi:10.1109/jstqe.2006.884088

Pathak, S., Van Thourhout, D., & Bogaerts, W. (2013). Design trade-offs for silicon-on-insulator-based AWGs for (de)multiplexer applications. Optics Letters, 38(16), 2961. doi:10.1364/ol.38.002961

Van Laere, F., Claes, T., Schrauwen, J., Scheerlinck, S., Bogaerts, W., Taillaert, D., … Baets, R. (2007). Compact Focusing Grating Couplers for Silicon-on-Insulator Integrated Circuits. IEEE Photonics Technology Letters, 19(23), 1919-1921. doi:10.1109/lpt.2007.908762

Henschel, W., Georgiev, Y. M., & Kurz, H. (2003). Study of a high contrast process for hydrogen silsesquioxane as a negative tone electron beam resist. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 21(5), 2018. doi:10.1116/1.1603284

LEMME, M. (2004). Highly selective HBr etch process for fabrication of Triple-Gate nano-scale SOI-MOSFETs. Microelectronic Engineering, 73-74, 346-350. doi:10.1016/s0167-9317(04)00123-6

Bolten, J., Wahlbrink, T., Koo, N., Kurz, H., Stammberger, S., Hofmann, U., & Ünal, N. (2010). Improved CD control and line edge roughness in E-beam lithography through combining proximity effect correction with gray scale techniques. Microelectronic Engineering, 87(5-8), 1041-1043. doi:10.1016/j.mee.2009.11.097

Sakai, A., Fukazawa, T., & Baba, T. (2004). Estimation of Polarization Crosstalk at a Micro-Bend in Si-Photonic Wire Waveguide. Journal of Lightwave Technology, 22(2), 520-525. doi:10.1109/jlt.2004.824357

Kleijn, E., Williams, P. J., Whitbread, N. D., Wale, M. J., Smit, M. K., & Leijtens, X. J. M. (2012). Sidelobes in the response of arrayed waveguide gratings caused by polarization rotation. Optics Express, 20(20), 22660. doi:10.1364/oe.20.022660

Pathak, S., Vanslembrouck, M., Dumon, P., Van Thourhout, D., Verheyen, P., Lepage, G., … Bogaerts, W. (2014). Effect of Mask Discretization on Performance of Silicon Arrayed Waveguide Gratings. IEEE Photonics Technology Letters, 26(7), 718-721. doi:10.1109/lpt.2014.2303793

Okamoto, K., & Sugita, A. (1996). Flat spectral response arrayed-waveguide grating multiplexer with parabolic waveguide horns. Electronics Letters, 32(18), 1661. doi:10.1049/el:19961108

Munoz, P., Pastor, D., & Capmany, J. (2001). Analysis and design of arrayed waveguide gratings with MMI couplers. Optics Express, 9(7), 328. doi:10.1364/oe.9.000328

Doerr, C. R., Cappuzzo, M. A., Chen, E. Y., Wong-Foy, A., Gomez, L. T., & Buhl, L. L. (2006). Wideband Arrayed Waveguide Grating With Three Low-Loss Maxima Per Passband. IEEE Photonics Technology Letters, 18(21), 2308-2310. doi:10.1109/lpt.2006.885208

Leaird, D. E., Weiner, A. M., Kamei, S., Ishii, M., Sugita, A., & Okamoto, K. (2002). Generation of flat-topped 500-GHz pulse bursts using loss engineered arrayed waveguide gratings. IEEE Photonics Technology Letters, 14(6), 816-818. doi:10.1109/lpt.2002.1003103

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem