- -

Reflective arrayed waveguide gratings based on Sagnac loop reflectors with custom spectral response

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Reflective arrayed waveguide gratings based on Sagnac loop reflectors with custom spectral response

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gargallo Jaquotot, Bernardo Andrés es_ES
dc.contributor.author Muñoz Muñoz, Pascual es_ES
dc.contributor.author Baños López, Rocío es_ES
dc.contributor.author Giesecke, Anna Lena es_ES
dc.contributor.author Bolten, Jens es_ES
dc.contributor.author Wahlbrink, Thorsten es_ES
dc.contributor.author Kleinjans, Herbert es_ES
dc.date.accessioned 2015-11-19T07:41:12Z
dc.date.available 2015-11-19T07:41:12Z
dc.date.issued 2014-06-16
dc.identifier.uri http://hdl.handle.net/10251/57710
dc.description © 2014 Optical Society of America. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibited es_ES
dc.description.abstract In this paper, a model for the analysis and design of a reflective Arrayed Waveguide Grating is presented. The device consists of one half of a regular AWG where each arm waveguide in the array is terminated with a phase shifter and a Sagnac loop reflector. By individually adjusting the phase shifter and Sagnac reflectivity in each arm, additional functionality to that previously reported in the literature is attained, since this enables tailoring the spectral response of the AWG. The design and experimental demonstration of Gaussian pass-band shape devices in Silicon-on-Insulator technology are reported. Methods to obtain flattened and arbitrary spectral responses are described and supported by simulation results. (C) 2014 Optical Society of America es_ES
dc.description.sponsorship The authors acknowledge financial support by the Spanish MINECO projects TEC2010-21337, TEC2013-42332-P; FEDER UPVOV 10-3E-492 and UPVOV 08-3E-008. B. Gargallo acknowledges financial support through FPI grant BES-2011-046100. The authors thank J.S. Fandino for helpful discussions. en_EN
dc.language Inglés es_ES
dc.publisher Optical Society of America: Open Access Journals es_ES
dc.relation.ispartof Optics Express es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Paraxial wave optics es_ES
dc.subject Integrated optics devices es_ES
dc.subject Wavelength filtering devices es_ES
dc.subject Diffraction gratings es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Reflective arrayed waveguide gratings based on Sagnac loop reflectors with custom spectral response es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1364/OE.22.014348
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TEC2010-21337/ES/ADVANCE TOWARDS A MONOLITHICALLY INTEGRATED COHERENT TRANSCEIVER/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2013-42332-P/ES/PHOTONIC INTEGRATED FILTERS FOR ENHANCED SIGNAL PROCESSING/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BES-2011-046100/ES/BES-2011-046100/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//UPVOV 08-3E-008/
dc.relation.projectID info:eu-repo/grantAgreement/UPV//UPVOV 10-3E-492/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia es_ES
dc.description.bibliographicCitation Gargallo Jaquotot, BA.; Muñoz Muñoz, P.; Baños López, R.; Giesecke, AL.; Bolten, J.; Wahlbrink, T.; Kleinjans, H. (2014). Reflective arrayed waveguide gratings based on Sagnac loop reflectors with custom spectral response. Optics Express. 22(12):14348-14362. https://doi.org/10.1364/OE.22.014348 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1364/OE.22.014348 es_ES
dc.description.upvformatpinicio 14348 es_ES
dc.description.upvformatpfin 14362 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 22 es_ES
dc.description.issue 12 es_ES
dc.relation.senia 267250 es_ES
dc.identifier.eissn 1094-4087
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Universitat Politècnica de València
dc.description.references Brackett, C. A. (1990). Dense wavelength division multiplexing networks: principles and applications. IEEE Journal on Selected Areas in Communications, 8(6), 948-964. doi:10.1109/49.57798 es_ES
dc.description.references Kirchain, R., & Kimerling, L. (2007). A roadmap for nanophotonics. Nature Photonics, 1(6), 303-305. doi:10.1038/nphoton.2007.84 es_ES
dc.description.references Pennings, E., Khoe, G.-D., Smit, M. K., & Staring, T. (1996). Integrated-optic versus microoptic devices for fiber-optic telecommunication systems: a comparison. IEEE Journal of Selected Topics in Quantum Electronics, 2(2), 151-164. doi:10.1109/2944.577349 es_ES
dc.description.references Smit, M. K., & Van Dam, C. (1996). PHASAR-based WDM-devices: Principles, design and applications. IEEE Journal of Selected Topics in Quantum Electronics, 2(2), 236-250. doi:10.1109/2944.577370 es_ES
dc.description.references Dragone, C., Edwards, C. A., & Kistler, R. C. (1991). Integrated optics N*N multiplexer on silicon. IEEE Photonics Technology Letters, 3(10), 896-899. doi:10.1109/68.93254 es_ES
dc.description.references Lycett, R. J., Gallagher, D. F. G., & Brulis, V. J. (2013). Perfect Chirped Echelle Grating Wavelength Multiplexor: Design and Optimization. IEEE Photonics Journal, 5(2), 2400123-2400123. doi:10.1109/jphot.2013.2251874 es_ES
dc.description.references Ryckeboer, E., Gassenq, A., Muneeb, M., Hattasan, N., Pathak, S., Cerutti, L., … Roelkens, G. (2013). Silicon-on-insulator spectrometers with integrated GaInAsSb photodiodes for wide-band spectroscopy from 1510 to 2300 nm. Optics Express, 21(5), 6101. doi:10.1364/oe.21.006101 es_ES
dc.description.references Pruessner, M. W., Stievater, T. H., & Rabinovich, W. S. (2007). Integrated waveguide Fabry-Perot microcavities with silicon/air Bragg mirrors. Optics Letters, 32(5), 533. doi:10.1364/ol.32.000533 es_ES
dc.description.references De Peralta, L. G., Bernussi, A. A., Frisbie, S., Gale, R., & Temkin, H. (2003). Reflective arrayed waveguide grating multiplexer. IEEE Photonics Technology Letters, 15(10), 1398-1400. doi:10.1109/lpt.2003.818223 es_ES
dc.description.references Inoue, Y., Himeno, A., Moriwaki, K., & Kawachi, M. (1995). Silica-based arrayed-waveguide grating circuit as optical splitter/router. Electronics Letters, 31(9), 726. doi:10.1049/el:19950497 es_ES
dc.description.references Soole, J. B. D., Amersfoort, M. R., LeBlanc, H. P., Rajhel, A., Caneau, C., Youtsey, C., & Adesida, I. (1996). Compact polarisation independent InP reflective arrayed waveguide grating filter. Electronics Letters, 32(19), 1769. doi:10.1049/el:19961212 es_ES
dc.description.references Dai, D., Fu, X., Shi, Y., & He, S. (2010). Experimental demonstration of an ultracompact Si-nanowire-based reflective arrayed-waveguide grating (de)multiplexer with photonic crystal reflectors. Optics Letters, 35(15), 2594. doi:10.1364/ol.35.002594 es_ES
dc.description.references Tsai, J.-C., Huang, S., Hah, D., Toshiyoshi, H., & Wu, M. C. (2004). Open-Loop Operation of MEMS-Based<tex>$1,times N$</tex>Wavelength-Selective Switch With Long-Term Stability and Repeatability. IEEE Photonics Technology Letters, 16(4), 1041-1043. doi:10.1109/lpt.2004.824652 es_ES
dc.description.references Okamoto, K., & Ishida, K. (2013). Fabrication of silicon reflection-type arrayed-waveguide gratings with distributed Bragg reflectors. Optics Letters, 38(18), 3530. doi:10.1364/ol.38.003530 es_ES
dc.description.references Okamoto, K., & Yamada, H. (1995). Arrayed-waveguide grating multiplexer with flat spectral response. Optics Letters, 20(1), 43. doi:10.1364/ol.20.000043 es_ES
dc.description.references Doerr, C. R., Zhang, L., & Winzer, P. J. (2011). Monolithic InP Multiwavelength Coherent Receiver Using a Chirped Arrayed Waveguide Grating. Journal of Lightwave Technology, 29(4), 536-541. doi:10.1109/jlt.2010.2097240 es_ES
dc.description.references Munoz, P., Pastor, D., & Capmany, J. (2002). Modeling and design of arrayed waveguide gratings. Journal of Lightwave Technology, 20(4), 661-674. doi:10.1109/50.996587 es_ES
dc.description.references Jinguji, K., Takato, N., Hida, Y., Kitoh, T., & Kawachi, M. (1996). Two-port optical wavelength circuits composed of cascaded Mach-Zehnder interferometers with point-symmetrical configurations. Journal of Lightwave Technology, 14(10), 2301-2310. doi:10.1109/50.541222 es_ES
dc.description.references Soldano, L. B., & Pennings, E. C. M. (1995). Optical multi-mode interference devices based on self-imaging: principles and applications. Journal of Lightwave Technology, 13(4), 615-627. doi:10.1109/50.372474 es_ES
dc.description.references Bachmann, M., Besse, P. A., & Melchior, H. (1994). General self-imaging properties in N × N multimode interference couplers including phase relations. Applied Optics, 33(18), 3905. doi:10.1364/ao.33.003905 es_ES
dc.description.references Besse, P. A., Gini, E., Bachmann, M., & Melchior, H. (1996). New 2×2 and 1×3 multimode interference couplers with free selection of power splitting ratios. Journal of Lightwave Technology, 14(10), 2286-2293. doi:10.1109/50.541220 es_ES
dc.description.references Leuthold, J., & Joyner, C. W. (2001). Multimode interference couplers with tunable power splitting ratios. Journal of Lightwave Technology, 19(5), 700-707. doi:10.1109/50.923483 es_ES
dc.description.references Seok-Hwan Jeong, & Morito, K. (2010). Novel Optical 90$^{\circ}$ Hybrid Consisting of a Paired Interference Based 2$\,\times\,$4 MMI Coupler, a Phase Shifter and a 2$\,\times\,$2 MMI Coupler. Journal of Lightwave Technology, 28(9), 1323-1331. doi:10.1109/jlt.2010.2042278 es_ES
dc.description.references Talahashi, H., Oda, K., Toba, H., & Inoue, Y. (1995). Transmission characteristics of arrayed waveguide N×N wavelength multiplexer. Journal of Lightwave Technology, 13(3), 447-455. doi:10.1109/50.372441 es_ES
dc.description.references Munoz, P., Pastor, D., Capmany, J., Ortega, D., Pujol, A., & Bonar, J. R. (2004). AWG Model Validation Through Measurement of Fabricated Devices. Journal of Lightwave Technology, 22(12), 2763-2777. doi:10.1109/jlt.2004.833275 es_ES
dc.description.references Kleijn, E., Smit, M. K., & Leijtens, X. J. M. (2013). New Analytical Arrayed Waveguide Grating Model. Journal of Lightwave Technology, 31(20), 3309-3314. doi:10.1109/jlt.2013.2281612 es_ES
dc.description.references Bogaerts, W., Dumon, P., Thourhout, D. V., Taillaert, D., Jaenen, P., Wouters, J., … Baets, R. G. (2006). Compact Wavelength-Selective Functions in Silicon-on-Insulator Photonic Wires. IEEE Journal of Selected Topics in Quantum Electronics, 12(6), 1394-1401. doi:10.1109/jstqe.2006.884088 es_ES
dc.description.references Pathak, S., Van Thourhout, D., & Bogaerts, W. (2013). Design trade-offs for silicon-on-insulator-based AWGs for (de)multiplexer applications. Optics Letters, 38(16), 2961. doi:10.1364/ol.38.002961 es_ES
dc.description.references Van Laere, F., Claes, T., Schrauwen, J., Scheerlinck, S., Bogaerts, W., Taillaert, D., … Baets, R. (2007). Compact Focusing Grating Couplers for Silicon-on-Insulator Integrated Circuits. IEEE Photonics Technology Letters, 19(23), 1919-1921. doi:10.1109/lpt.2007.908762 es_ES
dc.description.references Henschel, W., Georgiev, Y. M., & Kurz, H. (2003). Study of a high contrast process for hydrogen silsesquioxane as a negative tone electron beam resist. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 21(5), 2018. doi:10.1116/1.1603284 es_ES
dc.description.references LEMME, M. (2004). Highly selective HBr etch process for fabrication of Triple-Gate nano-scale SOI-MOSFETs. Microelectronic Engineering, 73-74, 346-350. doi:10.1016/s0167-9317(04)00123-6 es_ES
dc.description.references Bolten, J., Wahlbrink, T., Koo, N., Kurz, H., Stammberger, S., Hofmann, U., & Ünal, N. (2010). Improved CD control and line edge roughness in E-beam lithography through combining proximity effect correction with gray scale techniques. Microelectronic Engineering, 87(5-8), 1041-1043. doi:10.1016/j.mee.2009.11.097 es_ES
dc.description.references Sakai, A., Fukazawa, T., & Baba, T. (2004). Estimation of Polarization Crosstalk at a Micro-Bend in Si-Photonic Wire Waveguide. Journal of Lightwave Technology, 22(2), 520-525. doi:10.1109/jlt.2004.824357 es_ES
dc.description.references Kleijn, E., Williams, P. J., Whitbread, N. D., Wale, M. J., Smit, M. K., & Leijtens, X. J. M. (2012). Sidelobes in the response of arrayed waveguide gratings caused by polarization rotation. Optics Express, 20(20), 22660. doi:10.1364/oe.20.022660 es_ES
dc.description.references Pathak, S., Vanslembrouck, M., Dumon, P., Van Thourhout, D., Verheyen, P., Lepage, G., … Bogaerts, W. (2014). Effect of Mask Discretization on Performance of Silicon Arrayed Waveguide Gratings. IEEE Photonics Technology Letters, 26(7), 718-721. doi:10.1109/lpt.2014.2303793 es_ES
dc.description.references Okamoto, K., & Sugita, A. (1996). Flat spectral response arrayed-waveguide grating multiplexer with parabolic waveguide horns. Electronics Letters, 32(18), 1661. doi:10.1049/el:19961108 es_ES
dc.description.references Munoz, P., Pastor, D., & Capmany, J. (2001). Analysis and design of arrayed waveguide gratings with MMI couplers. Optics Express, 9(7), 328. doi:10.1364/oe.9.000328 es_ES
dc.description.references Doerr, C. R., Cappuzzo, M. A., Chen, E. Y., Wong-Foy, A., Gomez, L. T., & Buhl, L. L. (2006). Wideband Arrayed Waveguide Grating With Three Low-Loss Maxima Per Passband. IEEE Photonics Technology Letters, 18(21), 2308-2310. doi:10.1109/lpt.2006.885208 es_ES
dc.description.references Leaird, D. E., Weiner, A. M., Kamei, S., Ishii, M., Sugita, A., & Okamoto, K. (2002). Generation of flat-topped 500-GHz pulse bursts using loss engineered arrayed waveguide gratings. IEEE Photonics Technology Letters, 14(6), 816-818. doi:10.1109/lpt.2002.1003103 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem