Mostrar el registro sencillo del ítem
dc.contributor.author | Opanasenko, Maksym | es_ES |
dc.contributor.author | Dhakshinamoorthy, Amarajothi | es_ES |
dc.contributor.author | Cejka, Jiri | es_ES |
dc.contributor.author | García Gómez, Hermenegildo | es_ES |
dc.date.accessioned | 2015-11-19T08:29:40Z | |
dc.date.issued | 2013-06 | |
dc.identifier.issn | 1867-3880 | |
dc.identifier.uri | http://hdl.handle.net/10251/57718 | |
dc.description.abstract | [EN] In the present study we have selected three different condensation reactions as model reactions, namely the hydroxylalkylation of anisole by paraformaldehyde to bis(methoxyphenyl)-methane, the Pechmann condensation of phenols with ethyl acetoacetate (EAA) to coumarins and the Knoevenagel condensation of two aldehydes with three active methylene compounds to form a,b-unsaturated esters and nitriles, using two related Fe-containing metal organic frameworks (MOFs), namely commercial Fe(BTC) (BTC: 1,3,5-benzenetricarboxylate) and synthetic MIL-100(Fe) as the catalysts. The main aim of this study was to determine the nature of the poisons, the MOF structural stability in connection with the substrate, and the variations in the product selectivity. We have found that undesired intermediates (bisarylmethyl cation in the case of hydroxyalkylation) or byproducts (benzoic acid in the case of Knoevenagel condensation) can poison the MOF by being strongly adsorbed within the MOFs and blocking the pores. In the Pechmann condensation, besides pore blocking, a low structural stability of Fe(BTC) was reflected in the collapse of the crystal structure, while using polyhydroxy aromatic compounds because of their ability to act as ligands for Fe3+, replacing trimesate ligand. MIL-100(Fe) was considerably more robust for this reaction. | es_ES |
dc.description.sponsorship | Financial support by the Spanish Ministry de Economy and Competitiveness (Grant CTQ-2012-31326) is gratefully acknowledged. The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 228862. J.C.. thanks the Czech Science Foundation for the financial support (Centre of Excellence - P106/12/G015). | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Wiley-VCH Verlag | es_ES |
dc.relation | MINECO/CTQ-2012-31326 | es_ES |
dc.relation.ispartof | ChemCatChem | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | aldehydes | es_ES |
dc.subject | CC coupling | es_ES |
dc.subject | heterogeneous catalysis | es_ES |
dc.subject | X-ray diffraction | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Deactivation Pathways of the Catalytic Activity of Metal-Organic Frameworks in Condensation Reactions | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1002/cctc.201200643 | |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/228862/EU/MOFs as Catalysts and Adsorbents: Discovery and Engineering of Materials for Industrial Applications/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GACR//P106%2F12%2FG015/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Opanasenko, M.; Dhakshinamoorthy, A.; Cejka, J.; García Gómez, H. (2013). Deactivation Pathways of the Catalytic Activity of Metal-Organic Frameworks in Condensation Reactions. ChemCatChem. 5(6):1553-1561. https://doi.org/10.1002/cctc.201200643 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1002/cctc.201200643 | es_ES |
dc.description.upvformatpinicio | 1553 | es_ES |
dc.description.upvformatpfin | 1561 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 5 | es_ES |
dc.description.issue | 6 | es_ES |
dc.relation.senia | 262512 | es_ES |
dc.contributor.funder | European Commission | |
dc.contributor.funder | Ministerio de Economía y Competitividad | |
dc.contributor.funder | Czech Science Foundation | |
dc.description.references | Ma, F.-J., Liu, S.-X., Sun, C.-Y., Liang, D.-D., Ren, G.-J., Wei, F., … Su, Z.-M. (2011). A Sodalite-Type Porous Metal−Organic Framework with Polyoxometalate Templates: Adsorption and Decomposition of Dimethyl Methylphosphonate. Journal of the American Chemical Society, 133(12), 4178-4181. doi:10.1021/ja109659k | es_ES |
dc.description.references | Corma, A., García, H., & Llabrés i Xamena, F. X. (2010). Engineering Metal Organic Frameworks for Heterogeneous Catalysis. Chemical Reviews, 110(8), 4606-4655. doi:10.1021/cr9003924 | es_ES |
dc.description.references | Farrusseng, D., Aguado, S., & Pinel, C. (2009). Metall-organische Gerüste für die Katalyse. Angewandte Chemie, 121(41), 7638-7649. doi:10.1002/ange.200806063 | es_ES |
dc.description.references | Farrusseng, D., Aguado, S., & Pinel, C. (2009). Metal-Organic Frameworks: Opportunities for Catalysis. Angewandte Chemie International Edition, 48(41), 7502-7513. doi:10.1002/anie.200806063 | es_ES |
dc.description.references | Férey, G. (2008). Hybrid porous solids: past, present, future. Chem. Soc. Rev., 37(1), 191-214. doi:10.1039/b618320b | es_ES |
dc.description.references | Janiak, C. (2003). Engineering coordination polymers towards applications. Dalton Transactions, (14), 2781. doi:10.1039/b305705b | es_ES |
dc.description.references | Lee, J., Farha, O. K., Roberts, J., Scheidt, K. A., Nguyen, S. T., & Hupp, J. T. (2009). Metal–organic framework materials as catalysts. Chemical Society Reviews, 38(5), 1450. doi:10.1039/b807080f | es_ES |
dc.description.references | Dhakshinamoorthy, A., & Garcia, H. (2012). Catalysis by metal nanoparticles embedded on metal–organic frameworks. Chemical Society Reviews, 41(15), 5262. doi:10.1039/c2cs35047e | es_ES |
dc.description.references | Aguado, S., Canivet, J., & Farrusseng, D. (2011). Engineering structured MOF at nano and macroscales for catalysis and separation. Journal of Materials Chemistry, 21(21), 7582. doi:10.1039/c1jm10787a | es_ES |
dc.description.references | Canivet, J., Aguado, S., Daniel, C., & Farrusseng, D. (2011). Engineering the Environment of a Catalytic Metal-Organic Framework by Postsynthetic Hydrophobization. ChemCatChem, 3(4), 675-678. doi:10.1002/cctc.201000386 | es_ES |
dc.description.references | Canivet, J., & Farrusseng, D. (2011). Protection-deprotection Methods Applied to Metal-Organic Frameworks for the Design of Original Single-Site Catalysts. ChemCatChem, 3(5), 823-826. doi:10.1002/cctc.201100002 | es_ES |
dc.description.references | GASCON, J., AKTAY, U., HERNANDEZALONSO, M., VANKLINK, G., & KAPTEIJN, F. (2009). Amino-based metal-organic frameworks as stable, highly active basic catalysts. Journal of Catalysis, 261(1), 75-87. doi:10.1016/j.jcat.2008.11.010 | es_ES |
dc.description.references | Hasegawa, S., Horike, S., Matsuda, R., Furukawa, S., Mochizuki, K., Kinoshita, Y., & Kitagawa, S. (2007). Three-Dimensional Porous Coordination Polymer Functionalized with Amide Groups Based on Tridentate Ligand: Selective Sorption and Catalysis. Journal of the American Chemical Society, 129(9), 2607-2614. doi:10.1021/ja067374y | es_ES |
dc.description.references | Kockrick, E., Lescouet, T., Kudrik, E. V., Sorokin, A. B., & Farrusseng, D. (2011). Synergistic effects of encapsulated phthalocyanine complexes in MIL-101 for the selective aerobic oxidation of tetralin. Chem. Commun., 47(5), 1562-1564. doi:10.1039/c0cc04431h | es_ES |
dc.description.references | Pérez-Mayoral, E., & Čejka, J. (2010). [Cu3(BTC)2]: A Metal-Organic Framework Catalyst for the Friedländer Reaction. ChemCatChem, 3(1), 157-159. doi:10.1002/cctc.201000201 | es_ES |
dc.description.references | Pérez-Mayoral, E., Musilová, Z., Gil, B., Marszalek, B., Položij, M., Nachtigall, P., & Čejka, J. (2012). Synthesis of quinolines via Friedländer reaction catalyzed by CuBTC metal–organic-framework. Dalton Transactions, 41(14), 4036. doi:10.1039/c2dt11978a | es_ES |
dc.description.references | Duan, C., Wei, M., Guo, D., He, C., & Meng, Q. (2010). Crystal Structures and Properties of Large Protonated Water Clusters Encapsulated by Metal−Organic Frameworks. Journal of the American Chemical Society, 132(10), 3321-3330. doi:10.1021/ja907023c | es_ES |
dc.description.references | Horcajada, P., Surblé, S., Serre, C., Hong, D.-Y., Seo, Y.-K., Chang, J.-S., … Férey, G. (2007). Synthesis and catalytic properties of MIL-100(Fe), an iron(iii) carboxylate with large pores. Chem. Commun., (27), 2820-2822. doi:10.1039/b704325b | es_ES |
dc.description.references | Dhakshinamoorthy, A., Alvaro, M., Horcajada, P., Gibson, E., Vishnuvarthan, M., Vimont, A., … Garcia, H. (2012). Comparison of Porous Iron Trimesates Basolite F300 and MIL-100(Fe) As Heterogeneous Catalysts for Lewis Acid and Oxidation Reactions: Roles of Structural Defects and Stability. ACS Catalysis, 2(10), 2060-2065. doi:10.1021/cs300345b | es_ES |
dc.description.references | Dhakshinamoorthy, A., Alvaro, M., Corma, A., & Garcia, H. (2011). Delineating similarities and dissimilarities in the use of metal organic frameworks and zeolites as heterogeneous catalysts for organic reactions. Dalton Transactions, 40(24), 6344. doi:10.1039/c1dt10354g | es_ES |
dc.description.references | Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2011). Metal–organic frameworks as heterogeneous catalysts for oxidation reactions. Catalysis Science & Technology, 1(6), 856. doi:10.1039/c1cy00068c | es_ES |
dc.description.references | Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Metal-Organic Frameworks as Efficient Heterogeneous Catalysts for the Regioselective Ring Opening of Epoxides. Chemistry - A European Journal, 16(28), 8530-8536. doi:10.1002/chem.201000588 | es_ES |
dc.description.references | Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2011). Atmospheric‐Pressure, Liquid‐Phase, Selective Aerobic Oxidation of Alkanes Catalysed by Metal–Organic Frameworks. Chemistry – A European Journal, 17(22), 6256-6262. doi:10.1002/chem.201002664 | es_ES |
dc.description.references | Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2012). Aerobic oxidation of cycloalkenes catalyzed by iron metal organic framework containing N-hydroxyphthalimide. Journal of Catalysis, 289, 259-265. doi:10.1016/j.jcat.2012.02.015 | es_ES |
dc.description.references | Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Aerobic Oxidation of Benzyl Amines to Benzyl Imines Catalyzed by Metal-Organic Framework Solids. ChemCatChem, 2(11), 1438-1443. doi:10.1002/cctc.201000175 | es_ES |
dc.description.references | ChemCatChem 2013 | es_ES |
dc.description.references | Dhakshinamoorthy, A., Alvaro, M., Concepcion, P., & Garcia, H. (2011). Chemical instability of Cu3(BTC)2 by reaction with thiols. Catalysis Communications, 12(11), 1018-1021. doi:10.1016/j.catcom.2011.03.018 | es_ES |
dc.description.references | Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Aerobic oxidation of thiols to disulfides using iron metal–organic frameworks as solid redox catalysts. Chemical Communications, 46(35), 6476. doi:10.1039/c0cc02210a | es_ES |
dc.description.references | Corma, A., & García, H. (2000). A unified approach to zeolites as acid catalysts and as supramolecular hosts exemplified. Journal of the Chemical Society, Dalton Transactions, (9), 1381-1394. doi:10.1039/a908408h | es_ES |
dc.description.references | Adv. Synth. Catal. 2013 | es_ES |
dc.description.references | Grajciar, L., Bludský, O., & Nachtigall, P. (2010). Water Adsorption on Coordinatively Unsaturated Sites in CuBTC MOF. The Journal of Physical Chemistry Letters, 1(23), 3354-3359. doi:10.1021/jz101378z | es_ES |
dc.description.references | Gul-E-Noor, F., Jee, B., Pöppl, A., Hartmann, M., Himsl, D., & Bertmer, M. (2011). Effects of varying water adsorption on a Cu3(BTC)2 metal–organic framework (MOF) as studied by 1H and 13C solid-state NMR spectroscopy. Physical Chemistry Chemical Physics, 13(17), 7783. doi:10.1039/c0cp02848g | es_ES |
dc.description.references | Selvakumar, S., Chidambaram, M., & Singh, A. P. (2007). Benzylsulfonic acid functionalized mesoporous Zr-TMS catalysts: An efficient and recyclable catalyst for the preparation of coumarin derivatives by Pechmann condensation reaction. Catalysis Communications, 8(5), 777-783. doi:10.1016/j.catcom.2006.08.039 | es_ES |
dc.description.references | Karimi, B., & Behzadnia, H. (2011). Periodic mesoporous silica chloride (PMSCl) as an efficient and recyclable catalyst for the Pechmann reaction. Catalysis Communications, 12(15), 1432-1436. doi:10.1016/j.catcom.2011.05.019 | es_ES |
dc.description.references | Karimi, B., & Zareyee, D. (2008). Design of a Highly Efficient and Water-Tolerant Sulfonic Acid Nanoreactor Based on Tunable Ordered Porous Silica for the von Pechmann Reaction. Organic Letters, 10(18), 3989-3992. doi:10.1021/ol8013107 | es_ES |
dc.description.references | Freeman, F. (1980). Properties and reactions of ylidenemalononitriles. Chemical Reviews, 80(4), 329-350. doi:10.1021/cr60326a004 | es_ES |
dc.description.references | Tietze, L. F. (1996). Domino Reactions in Organic Synthesis. Chemical Reviews, 96(1), 115-136. doi:10.1021/cr950027e | es_ES |
dc.description.references | Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Aerobic Oxidation of Benzylic Alcohols Catalyzed by Metal−Organic Frameworks Assisted by TEMPO. ACS Catalysis, 1(1), 48-53. doi:10.1021/cs1000703 | es_ES |