- -

Deactivation Pathways of the Catalytic Activity of Metal-Organic Frameworks in Condensation Reactions

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Deactivation Pathways of the Catalytic Activity of Metal-Organic Frameworks in Condensation Reactions

Show simple item record

Files in this item

dc.contributor.author Opanasenko, Maksym es_ES
dc.contributor.author Dhakshinamoorthy, Amarajothi es_ES
dc.contributor.author Cejka, Jiri es_ES
dc.contributor.author García Gómez, Hermenegildo es_ES
dc.date.accessioned 2015-11-19T08:29:40Z
dc.date.issued 2013-06
dc.identifier.issn 1867-3880
dc.identifier.uri http://hdl.handle.net/10251/57718
dc.description.abstract [EN] In the present study we have selected three different condensation reactions as model reactions, namely the hydroxylalkylation of anisole by paraformaldehyde to bis(methoxyphenyl)-methane, the Pechmann condensation of phenols with ethyl acetoacetate (EAA) to coumarins and the Knoevenagel condensation of two aldehydes with three active methylene compounds to form a,b-unsaturated esters and nitriles, using two related Fe-containing metal organic frameworks (MOFs), namely commercial Fe(BTC) (BTC: 1,3,5-benzenetricarboxylate) and synthetic MIL-100(Fe) as the catalysts. The main aim of this study was to determine the nature of the poisons, the MOF structural stability in connection with the substrate, and the variations in the product selectivity. We have found that undesired intermediates (bisarylmethyl cation in the case of hydroxyalkylation) or byproducts (benzoic acid in the case of Knoevenagel condensation) can poison the MOF by being strongly adsorbed within the MOFs and blocking the pores. In the Pechmann condensation, besides pore blocking, a low structural stability of Fe(BTC) was reflected in the collapse of the crystal structure, while using polyhydroxy aromatic compounds because of their ability to act as ligands for Fe3+, replacing trimesate ligand. MIL-100(Fe) was considerably more robust for this reaction. es_ES
dc.description.sponsorship Financial support by the Spanish Ministry de Economy and Competitiveness (Grant CTQ-2012-31326) is gratefully acknowledged. The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 228862. J.C.. thanks the Czech Science Foundation for the financial support (Centre of Excellence - P106/12/G015). en_EN
dc.language Inglés es_ES
dc.publisher Wiley-VCH Verlag es_ES
dc.relation MINECO/CTQ-2012-31326 es_ES
dc.relation GACR/P106/12/G015 es_ES
dc.relation.ispartof ChemCatChem es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject aldehydes es_ES
dc.subject CC coupling es_ES
dc.subject heterogeneous catalysis es_ES
dc.subject X-ray diffraction es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Deactivation Pathways of the Catalytic Activity of Metal-Organic Frameworks in Condensation Reactions es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1002/cctc.201200643
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/228862 es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Opanasenko, M.; Dhakshinamoorthy, A.; Cejka, J.; García Gómez, H. (2013). Deactivation Pathways of the Catalytic Activity of Metal-Organic Frameworks in Condensation Reactions. ChemCatChem. 5(6):1553-1561. https://doi.org/10.1002/cctc.201200643 es_ES
dc.description.accrualMethod Senia es_ES
dc.relation.publisherversion http://dx.doi.org/10.1002/cctc.201200643 es_ES
dc.description.upvformatpinicio 1553 es_ES
dc.description.upvformatpfin 1561 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 5 es_ES
dc.description.issue 6 es_ES
dc.relation.senia 262512 es_ES
dc.contributor.funder European Commission
dc.contributor.funder Ministerio de Economía y Competitividad
dc.contributor.funder Czech Science Foundation
dc.relation.references Ma, F.-J., Liu, S.-X., Sun, C.-Y., Liang, D.-D., Ren, G.-J., Wei, F., … Su, Z.-M. (2011). A Sodalite-Type Porous Metal−Organic Framework with Polyoxometalate Templates: Adsorption and Decomposition of Dimethyl Methylphosphonate. Journal of the American Chemical Society, 133(12), 4178-4181. doi:10.1021/ja109659k es_ES
dc.relation.references Corma, A., García, H., & Llabrés i Xamena, F. X. (2010). Engineering Metal Organic Frameworks for Heterogeneous Catalysis. Chemical Reviews, 110(8), 4606-4655. doi:10.1021/cr9003924 es_ES
dc.relation.references Farrusseng, D., Aguado, S., & Pinel, C. (2009). Metall-organische Gerüste für die Katalyse. Angewandte Chemie, 121(41), 7638-7649. doi:10.1002/ange.200806063 es_ES
dc.relation.references Farrusseng, D., Aguado, S., & Pinel, C. (2009). Metal-Organic Frameworks: Opportunities for Catalysis. Angewandte Chemie International Edition, 48(41), 7502-7513. doi:10.1002/anie.200806063 es_ES
dc.relation.references Férey, G. (2008). Hybrid porous solids: past, present, future. Chem. Soc. Rev., 37(1), 191-214. doi:10.1039/b618320b es_ES
dc.relation.references Janiak, C. (2003). Engineering coordination polymers towards applications. Dalton Transactions, (14), 2781. doi:10.1039/b305705b es_ES
dc.relation.references Lee, J., Farha, O. K., Roberts, J., Scheidt, K. A., Nguyen, S. T., & Hupp, J. T. (2009). Metal–organic framework materials as catalysts. Chemical Society Reviews, 38(5), 1450. doi:10.1039/b807080f es_ES
dc.relation.references Dhakshinamoorthy, A., & Garcia, H. (2012). Catalysis by metal nanoparticles embedded on metal–organic frameworks. Chemical Society Reviews, 41(15), 5262. doi:10.1039/c2cs35047e es_ES
dc.relation.references Aguado, S., Canivet, J., & Farrusseng, D. (2011). Engineering structured MOF at nano and macroscales for catalysis and separation. Journal of Materials Chemistry, 21(21), 7582. doi:10.1039/c1jm10787a es_ES
dc.relation.references Canivet, J., Aguado, S., Daniel, C., & Farrusseng, D. (2011). Engineering the Environment of a Catalytic Metal-Organic Framework by Postsynthetic Hydrophobization. ChemCatChem, 3(4), 675-678. doi:10.1002/cctc.201000386 es_ES
dc.relation.references Canivet, J., & Farrusseng, D. (2011). Protection-deprotection Methods Applied to Metal-Organic Frameworks for the Design of Original Single-Site Catalysts. ChemCatChem, 3(5), 823-826. doi:10.1002/cctc.201100002 es_ES
dc.relation.references GASCON, J., AKTAY, U., HERNANDEZALONSO, M., VANKLINK, G., & KAPTEIJN, F. (2009). Amino-based metal-organic frameworks as stable, highly active basic catalysts. Journal of Catalysis, 261(1), 75-87. doi:10.1016/j.jcat.2008.11.010 es_ES
dc.relation.references Hasegawa, S., Horike, S., Matsuda, R., Furukawa, S., Mochizuki, K., Kinoshita, Y., & Kitagawa, S. (2007). Three-Dimensional Porous Coordination Polymer Functionalized with Amide Groups Based on Tridentate Ligand:  Selective Sorption and Catalysis. Journal of the American Chemical Society, 129(9), 2607-2614. doi:10.1021/ja067374y es_ES
dc.relation.references Kockrick, E., Lescouet, T., Kudrik, E. V., Sorokin, A. B., & Farrusseng, D. (2011). Synergistic effects of encapsulated phthalocyanine complexes in MIL-101 for the selective aerobic oxidation of tetralin. Chem. Commun., 47(5), 1562-1564. doi:10.1039/c0cc04431h es_ES
dc.relation.references Pérez-Mayoral, E., & Čejka, J. (2010). [Cu3(BTC)2]: A Metal-Organic Framework Catalyst for the Friedländer Reaction. ChemCatChem, 3(1), 157-159. doi:10.1002/cctc.201000201 es_ES
dc.relation.references Pérez-Mayoral, E., Musilová, Z., Gil, B., Marszalek, B., Položij, M., Nachtigall, P., & Čejka, J. (2012). Synthesis of quinolines via Friedländer reaction catalyzed by CuBTC metal–organic-framework. Dalton Transactions, 41(14), 4036. doi:10.1039/c2dt11978a es_ES
dc.relation.references Duan, C., Wei, M., Guo, D., He, C., & Meng, Q. (2010). Crystal Structures and Properties of Large Protonated Water Clusters Encapsulated by Metal−Organic Frameworks. Journal of the American Chemical Society, 132(10), 3321-3330. doi:10.1021/ja907023c es_ES
dc.relation.references Horcajada, P., Surblé, S., Serre, C., Hong, D.-Y., Seo, Y.-K., Chang, J.-S., … Férey, G. (2007). Synthesis and catalytic properties of MIL-100(Fe), an iron(iii) carboxylate with large pores. Chem. Commun., (27), 2820-2822. doi:10.1039/b704325b es_ES
dc.relation.references Dhakshinamoorthy, A., Alvaro, M., Horcajada, P., Gibson, E., Vishnuvarthan, M., Vimont, A., … Garcia, H. (2012). Comparison of Porous Iron Trimesates Basolite F300 and MIL-100(Fe) As Heterogeneous Catalysts for Lewis Acid and Oxidation Reactions: Roles of Structural Defects and Stability. ACS Catalysis, 2(10), 2060-2065. doi:10.1021/cs300345b es_ES
dc.relation.references Dhakshinamoorthy, A., Alvaro, M., Corma, A., & Garcia, H. (2011). Delineating similarities and dissimilarities in the use of metal organic frameworks and zeolites as heterogeneous catalysts for organic reactions. Dalton Transactions, 40(24), 6344. doi:10.1039/c1dt10354g es_ES
dc.relation.references Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2011). Metal–organic frameworks as heterogeneous catalysts for oxidation reactions. Catalysis Science & Technology, 1(6), 856. doi:10.1039/c1cy00068c es_ES
dc.relation.references Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Metal-Organic Frameworks as Efficient Heterogeneous Catalysts for the Regioselective Ring Opening of Epoxides. Chemistry - A European Journal, 16(28), 8530-8536. doi:10.1002/chem.201000588 es_ES
dc.relation.references Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2011). Atmospheric‐Pressure, Liquid‐Phase, Selective Aerobic Oxidation of Alkanes Catalysed by Metal–Organic Frameworks. Chemistry – A European Journal, 17(22), 6256-6262. doi:10.1002/chem.201002664 es_ES
dc.relation.references Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2012). Aerobic oxidation of cycloalkenes catalyzed by iron metal organic framework containing N-hydroxyphthalimide. Journal of Catalysis, 289, 259-265. doi:10.1016/j.jcat.2012.02.015 es_ES
dc.relation.references Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Aerobic Oxidation of Benzyl Amines to Benzyl Imines Catalyzed by Metal-Organic Framework Solids. ChemCatChem, 2(11), 1438-1443. doi:10.1002/cctc.201000175 es_ES
dc.relation.references ChemCatChem 2013 es_ES
dc.relation.references Dhakshinamoorthy, A., Alvaro, M., Concepcion, P., & Garcia, H. (2011). Chemical instability of Cu3(BTC)2 by reaction with thiols. Catalysis Communications, 12(11), 1018-1021. doi:10.1016/j.catcom.2011.03.018 es_ES
dc.relation.references Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Aerobic oxidation of thiols to disulfides using iron metal–organic frameworks as solid redox catalysts. Chemical Communications, 46(35), 6476. doi:10.1039/c0cc02210a es_ES
dc.relation.references Corma, A., & García, H. (2000). A unified approach to zeolites as acid catalysts and as supramolecular hosts exemplified. Journal of the Chemical Society, Dalton Transactions, (9), 1381-1394. doi:10.1039/a908408h es_ES
dc.relation.references Adv. Synth. Catal. 2013 es_ES
dc.relation.references Grajciar, L., Bludský, O., & Nachtigall, P. (2010). Water Adsorption on Coordinatively Unsaturated Sites in CuBTC MOF. The Journal of Physical Chemistry Letters, 1(23), 3354-3359. doi:10.1021/jz101378z es_ES
dc.relation.references Gul-E-Noor, F., Jee, B., Pöppl, A., Hartmann, M., Himsl, D., & Bertmer, M. (2011). Effects of varying water adsorption on a Cu3(BTC)2 metal–organic framework (MOF) as studied by 1H and 13C solid-state NMR spectroscopy. Physical Chemistry Chemical Physics, 13(17), 7783. doi:10.1039/c0cp02848g es_ES
dc.relation.references Selvakumar, S., Chidambaram, M., & Singh, A. P. (2007). Benzylsulfonic acid functionalized mesoporous Zr-TMS catalysts: An efficient and recyclable catalyst for the preparation of coumarin derivatives by Pechmann condensation reaction. Catalysis Communications, 8(5), 777-783. doi:10.1016/j.catcom.2006.08.039 es_ES
dc.relation.references Karimi, B., & Behzadnia, H. (2011). Periodic mesoporous silica chloride (PMSCl) as an efficient and recyclable catalyst for the Pechmann reaction. Catalysis Communications, 12(15), 1432-1436. doi:10.1016/j.catcom.2011.05.019 es_ES
dc.relation.references Karimi, B., & Zareyee, D. (2008). Design of a Highly Efficient and Water-Tolerant Sulfonic Acid Nanoreactor Based on Tunable Ordered Porous Silica for the von Pechmann Reaction. Organic Letters, 10(18), 3989-3992. doi:10.1021/ol8013107 es_ES
dc.relation.references Freeman, F. (1980). Properties and reactions of ylidenemalononitriles. Chemical Reviews, 80(4), 329-350. doi:10.1021/cr60326a004 es_ES
dc.relation.references Tietze, L. F. (1996). Domino Reactions in Organic Synthesis. Chemical Reviews, 96(1), 115-136. doi:10.1021/cr950027e es_ES
dc.relation.references Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Aerobic Oxidation of Benzylic Alcohols Catalyzed by Metal−Organic Frameworks Assisted by TEMPO. ACS Catalysis, 1(1), 48-53. doi:10.1021/cs1000703 es_ES


This item appears in the following Collection(s)

Show simple item record