- -

Deactivation Pathways of the Catalytic Activity of Metal-Organic Frameworks in Condensation Reactions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Deactivation Pathways of the Catalytic Activity of Metal-Organic Frameworks in Condensation Reactions

Mostrar el registro completo del ítem

Opanasenko, M.; Dhakshinamoorthy, A.; Cejka, J.; García Gómez, H. (2013). Deactivation Pathways of the Catalytic Activity of Metal-Organic Frameworks in Condensation Reactions. ChemCatChem. 5(6):1553-1561. https://doi.org/10.1002/cctc.201200643

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/57718

Ficheros en el ítem

Metadatos del ítem

Título: Deactivation Pathways of the Catalytic Activity of Metal-Organic Frameworks in Condensation Reactions
Autor: Opanasenko, Maksym Dhakshinamoorthy, Amarajothi Cejka, Jiri García Gómez, Hermenegildo
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] In the present study we have selected three different condensation reactions as model reactions, namely the hydroxylalkylation of anisole by paraformaldehyde to bis(methoxyphenyl)-methane, the Pechmann condensation ...[+]
Palabras clave: aldehydes , CC coupling , heterogeneous catalysis , X-ray diffraction
Derechos de uso: Cerrado
Fuente:
ChemCatChem. (issn: 1867-3880 )
DOI: 10.1002/cctc.201200643
Editorial:
Wiley-VCH Verlag
Versión del editor: http://dx.doi.org/10.1002/cctc.201200643
Código del Proyecto:
info:eu-repo/grantAgreement/EC/FP7/228862/EU/MOFs as Catalysts and Adsorbents: Discovery and Engineering of Materials for Industrial Applications/
info:eu-repo/grantAgreement/GACR//P106%2F12%2FG015/
MINECO/CTQ-2012-31326
Agradecimientos:
Financial support by the Spanish Ministry de Economy and Competitiveness (Grant CTQ-2012-31326) is gratefully acknowledged. The research leading to these results has received funding from the European Community's Seventh ...[+]
Tipo: Artículo

References

Ma, F.-J., Liu, S.-X., Sun, C.-Y., Liang, D.-D., Ren, G.-J., Wei, F., … Su, Z.-M. (2011). A Sodalite-Type Porous Metal−Organic Framework with Polyoxometalate Templates: Adsorption and Decomposition of Dimethyl Methylphosphonate. Journal of the American Chemical Society, 133(12), 4178-4181. doi:10.1021/ja109659k

Corma, A., García, H., & Llabrés i Xamena, F. X. (2010). Engineering Metal Organic Frameworks for Heterogeneous Catalysis. Chemical Reviews, 110(8), 4606-4655. doi:10.1021/cr9003924

Farrusseng, D., Aguado, S., & Pinel, C. (2009). Metall-organische Gerüste für die Katalyse. Angewandte Chemie, 121(41), 7638-7649. doi:10.1002/ange.200806063 [+]
Ma, F.-J., Liu, S.-X., Sun, C.-Y., Liang, D.-D., Ren, G.-J., Wei, F., … Su, Z.-M. (2011). A Sodalite-Type Porous Metal−Organic Framework with Polyoxometalate Templates: Adsorption and Decomposition of Dimethyl Methylphosphonate. Journal of the American Chemical Society, 133(12), 4178-4181. doi:10.1021/ja109659k

Corma, A., García, H., & Llabrés i Xamena, F. X. (2010). Engineering Metal Organic Frameworks for Heterogeneous Catalysis. Chemical Reviews, 110(8), 4606-4655. doi:10.1021/cr9003924

Farrusseng, D., Aguado, S., & Pinel, C. (2009). Metall-organische Gerüste für die Katalyse. Angewandte Chemie, 121(41), 7638-7649. doi:10.1002/ange.200806063

Farrusseng, D., Aguado, S., & Pinel, C. (2009). Metal-Organic Frameworks: Opportunities for Catalysis. Angewandte Chemie International Edition, 48(41), 7502-7513. doi:10.1002/anie.200806063

Férey, G. (2008). Hybrid porous solids: past, present, future. Chem. Soc. Rev., 37(1), 191-214. doi:10.1039/b618320b

Janiak, C. (2003). Engineering coordination polymers towards applications. Dalton Transactions, (14), 2781. doi:10.1039/b305705b

Lee, J., Farha, O. K., Roberts, J., Scheidt, K. A., Nguyen, S. T., & Hupp, J. T. (2009). Metal–organic framework materials as catalysts. Chemical Society Reviews, 38(5), 1450. doi:10.1039/b807080f

Dhakshinamoorthy, A., & Garcia, H. (2012). Catalysis by metal nanoparticles embedded on metal–organic frameworks. Chemical Society Reviews, 41(15), 5262. doi:10.1039/c2cs35047e

Aguado, S., Canivet, J., & Farrusseng, D. (2011). Engineering structured MOF at nano and macroscales for catalysis and separation. Journal of Materials Chemistry, 21(21), 7582. doi:10.1039/c1jm10787a

Canivet, J., Aguado, S., Daniel, C., & Farrusseng, D. (2011). Engineering the Environment of a Catalytic Metal-Organic Framework by Postsynthetic Hydrophobization. ChemCatChem, 3(4), 675-678. doi:10.1002/cctc.201000386

Canivet, J., & Farrusseng, D. (2011). Protection-deprotection Methods Applied to Metal-Organic Frameworks for the Design of Original Single-Site Catalysts. ChemCatChem, 3(5), 823-826. doi:10.1002/cctc.201100002

GASCON, J., AKTAY, U., HERNANDEZALONSO, M., VANKLINK, G., & KAPTEIJN, F. (2009). Amino-based metal-organic frameworks as stable, highly active basic catalysts. Journal of Catalysis, 261(1), 75-87. doi:10.1016/j.jcat.2008.11.010

Hasegawa, S., Horike, S., Matsuda, R., Furukawa, S., Mochizuki, K., Kinoshita, Y., & Kitagawa, S. (2007). Three-Dimensional Porous Coordination Polymer Functionalized with Amide Groups Based on Tridentate Ligand:  Selective Sorption and Catalysis. Journal of the American Chemical Society, 129(9), 2607-2614. doi:10.1021/ja067374y

Kockrick, E., Lescouet, T., Kudrik, E. V., Sorokin, A. B., & Farrusseng, D. (2011). Synergistic effects of encapsulated phthalocyanine complexes in MIL-101 for the selective aerobic oxidation of tetralin. Chem. Commun., 47(5), 1562-1564. doi:10.1039/c0cc04431h

Pérez-Mayoral, E., & Čejka, J. (2010). [Cu3(BTC)2]: A Metal-Organic Framework Catalyst for the Friedländer Reaction. ChemCatChem, 3(1), 157-159. doi:10.1002/cctc.201000201

Pérez-Mayoral, E., Musilová, Z., Gil, B., Marszalek, B., Položij, M., Nachtigall, P., & Čejka, J. (2012). Synthesis of quinolines via Friedländer reaction catalyzed by CuBTC metal–organic-framework. Dalton Transactions, 41(14), 4036. doi:10.1039/c2dt11978a

Duan, C., Wei, M., Guo, D., He, C., & Meng, Q. (2010). Crystal Structures and Properties of Large Protonated Water Clusters Encapsulated by Metal−Organic Frameworks. Journal of the American Chemical Society, 132(10), 3321-3330. doi:10.1021/ja907023c

Horcajada, P., Surblé, S., Serre, C., Hong, D.-Y., Seo, Y.-K., Chang, J.-S., … Férey, G. (2007). Synthesis and catalytic properties of MIL-100(Fe), an iron(iii) carboxylate with large pores. Chem. Commun., (27), 2820-2822. doi:10.1039/b704325b

Dhakshinamoorthy, A., Alvaro, M., Horcajada, P., Gibson, E., Vishnuvarthan, M., Vimont, A., … Garcia, H. (2012). Comparison of Porous Iron Trimesates Basolite F300 and MIL-100(Fe) As Heterogeneous Catalysts for Lewis Acid and Oxidation Reactions: Roles of Structural Defects and Stability. ACS Catalysis, 2(10), 2060-2065. doi:10.1021/cs300345b

Dhakshinamoorthy, A., Alvaro, M., Corma, A., & Garcia, H. (2011). Delineating similarities and dissimilarities in the use of metal organic frameworks and zeolites as heterogeneous catalysts for organic reactions. Dalton Transactions, 40(24), 6344. doi:10.1039/c1dt10354g

Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2011). Metal–organic frameworks as heterogeneous catalysts for oxidation reactions. Catalysis Science & Technology, 1(6), 856. doi:10.1039/c1cy00068c

Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Metal-Organic Frameworks as Efficient Heterogeneous Catalysts for the Regioselective Ring Opening of Epoxides. Chemistry - A European Journal, 16(28), 8530-8536. doi:10.1002/chem.201000588

Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2011). Atmospheric‐Pressure, Liquid‐Phase, Selective Aerobic Oxidation of Alkanes Catalysed by Metal–Organic Frameworks. Chemistry – A European Journal, 17(22), 6256-6262. doi:10.1002/chem.201002664

Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2012). Aerobic oxidation of cycloalkenes catalyzed by iron metal organic framework containing N-hydroxyphthalimide. Journal of Catalysis, 289, 259-265. doi:10.1016/j.jcat.2012.02.015

Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Aerobic Oxidation of Benzyl Amines to Benzyl Imines Catalyzed by Metal-Organic Framework Solids. ChemCatChem, 2(11), 1438-1443. doi:10.1002/cctc.201000175

ChemCatChem 2013

Dhakshinamoorthy, A., Alvaro, M., Concepcion, P., & Garcia, H. (2011). Chemical instability of Cu3(BTC)2 by reaction with thiols. Catalysis Communications, 12(11), 1018-1021. doi:10.1016/j.catcom.2011.03.018

Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Aerobic oxidation of thiols to disulfides using iron metal–organic frameworks as solid redox catalysts. Chemical Communications, 46(35), 6476. doi:10.1039/c0cc02210a

Corma, A., & García, H. (2000). A unified approach to zeolites as acid catalysts and as supramolecular hosts exemplified. Journal of the Chemical Society, Dalton Transactions, (9), 1381-1394. doi:10.1039/a908408h

Adv. Synth. Catal. 2013

Grajciar, L., Bludský, O., & Nachtigall, P. (2010). Water Adsorption on Coordinatively Unsaturated Sites in CuBTC MOF. The Journal of Physical Chemistry Letters, 1(23), 3354-3359. doi:10.1021/jz101378z

Gul-E-Noor, F., Jee, B., Pöppl, A., Hartmann, M., Himsl, D., & Bertmer, M. (2011). Effects of varying water adsorption on a Cu3(BTC)2 metal–organic framework (MOF) as studied by 1H and 13C solid-state NMR spectroscopy. Physical Chemistry Chemical Physics, 13(17), 7783. doi:10.1039/c0cp02848g

Selvakumar, S., Chidambaram, M., & Singh, A. P. (2007). Benzylsulfonic acid functionalized mesoporous Zr-TMS catalysts: An efficient and recyclable catalyst for the preparation of coumarin derivatives by Pechmann condensation reaction. Catalysis Communications, 8(5), 777-783. doi:10.1016/j.catcom.2006.08.039

Karimi, B., & Behzadnia, H. (2011). Periodic mesoporous silica chloride (PMSCl) as an efficient and recyclable catalyst for the Pechmann reaction. Catalysis Communications, 12(15), 1432-1436. doi:10.1016/j.catcom.2011.05.019

Karimi, B., & Zareyee, D. (2008). Design of a Highly Efficient and Water-Tolerant Sulfonic Acid Nanoreactor Based on Tunable Ordered Porous Silica for the von Pechmann Reaction. Organic Letters, 10(18), 3989-3992. doi:10.1021/ol8013107

Freeman, F. (1980). Properties and reactions of ylidenemalononitriles. Chemical Reviews, 80(4), 329-350. doi:10.1021/cr60326a004

Tietze, L. F. (1996). Domino Reactions in Organic Synthesis. Chemical Reviews, 96(1), 115-136. doi:10.1021/cr950027e

Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Aerobic Oxidation of Benzylic Alcohols Catalyzed by Metal−Organic Frameworks Assisted by TEMPO. ACS Catalysis, 1(1), 48-53. doi:10.1021/cs1000703

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem