- -

Design of bifunctional Ir-Zr based metal organic framework heterogeneous catalyst for the N-alkylation of amines alcohols

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Design of bifunctional Ir-Zr based metal organic framework heterogeneous catalyst for the N-alkylation of amines alcohols

Mostrar el registro completo del ítem

Rasero-Almansa, AM.; Corma Canós, A.; Iglesias, M.; Sánchez Alonso, F. (2014). Design of bifunctional Ir-Zr based metal organic framework heterogeneous catalyst for the N-alkylation of amines alcohols. ChemCatChem. 6(6):1794-1800. https://doi.org/10.1002/cctc.201402101

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/57720

Ficheros en el ítem

Metadatos del ítem

Título: Design of bifunctional Ir-Zr based metal organic framework heterogeneous catalyst for the N-alkylation of amines alcohols
Autor: Rasero-Almansa, A. M Corma Canós, Avelino Iglesias, M. Sánchez Alonso, Felix
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Fecha difusión:
Resumen:
[EN] The direct N-alkylation of amines with alcohols was performed with an Ir-Zr-based metal-organic framework multifunctional heterogeneous catalyst. This system is efficient and environmentally benign for the synthesis ...[+]
Palabras clave: Bifunctional catalyst , Heterogeneous catalyst , Iridium , N-alkylation , MOF
Derechos de uso: Cerrado
Fuente:
ChemCatChem. (issn: 1867-3880 ) (eissn: 1867-3899 )
DOI: 10.1002/cctc.201402101
Editorial:
Wiley-VCH Verlag
Versión del editor: http://dx.doi.org/10.1002/cctc.201402101
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//MAT2011-29020-C02-02/ES/MATERIALES HIBRIDOS ORGANO-INORGANICOS COMO CATALIZADORES SELECTIVOS RECICLABLES/
info:eu-repo/grantAgreement/MICINN//CSD2009-00050/ES/Desarrollo de catalizadores más eficientes para el diseño de procesos químicos sostenibles y produccion limpia de energia/ /
Agradecimientos:
We acknowledge financial support from the Ministerio de Economia y Competitividad (Spain) (project no. MAT2011-29020-C02-02), Consolider Program-Ingenio 2010 (project no. CSD-0050-MULTICAT), and Severo Ochoa program. ...[+]
Tipo: Artículo

References

Seayad, A. (2002). Internal Olefins to Linear Amines. Science, 297(5587), 1676-1678. doi:10.1126/science.1074801

Núñez Magro, A. A., Eastham, G. R., & Cole-Hamilton, D. J. (2007). The synthesis of amines by the homogeneous hydrogenation of secondary and primary amides. Chemical Communications, (30), 3154. doi:10.1039/b706635j

Salvatore, R. N., Yoon, C. H., & Jung, K. W. (2001). Synthesis of secondary amines. Tetrahedron, 57(37), 7785-7811. doi:10.1016/s0040-4020(01)00722-0 [+]
Seayad, A. (2002). Internal Olefins to Linear Amines. Science, 297(5587), 1676-1678. doi:10.1126/science.1074801

Núñez Magro, A. A., Eastham, G. R., & Cole-Hamilton, D. J. (2007). The synthesis of amines by the homogeneous hydrogenation of secondary and primary amides. Chemical Communications, (30), 3154. doi:10.1039/b706635j

Salvatore, R. N., Yoon, C. H., & Jung, K. W. (2001). Synthesis of secondary amines. Tetrahedron, 57(37), 7785-7811. doi:10.1016/s0040-4020(01)00722-0

Buchwald, S. L., Mauger, C., Mignani, G., & Scholz, U. (2006). Industrial-Scale Palladium-Catalyzed Coupling of Aryl Halides and Amines –A Personal Account. Advanced Synthesis & Catalysis, 348(1-2), 23-39. doi:10.1002/adsc.200505158

Navarro, O., Marion, N., Mei, J., & Nolan, S. P. (2006). Rapid Room Temperature Buchwald–Hartwig and Suzuki–Miyaura Couplings of Heteroaromatic Compounds Employing Low Catalyst Loadings. Chemistry - A European Journal, 12(19), 5142-5148. doi:10.1002/chem.200600283

Fujita, K., Li, Z., Ozeki, N., & Yamaguchi, R. (2003). N-Alkylation of amines with alcohols catalyzed by a Cp*Ir complex. Tetrahedron Letters, 44(13), 2687-2690. doi:10.1016/s0040-4039(03)00371-x

Gunanathan, C., & Milstein, D. (2013). Applications of Acceptorless Dehydrogenation and Related Transformations in Chemical Synthesis. Science, 341(6143), 1229712-1229712. doi:10.1126/science.1229712

Dobereiner, G. E., & Crabtree, R. H. (2010). Dehydrogenation as a Substrate-Activating Strategy in Homogeneous Transition-Metal Catalysis. Chemical Reviews, 110(2), 681-703. doi:10.1021/cr900202j

Suzuki, T. (2011). Organic Synthesis Involving Iridium-Catalyzed Oxidation. Chemical Reviews, 111(3), 1825-1845. doi:10.1021/cr100378r

Liu, J., Wu, X., Iggo, J. A., & Xiao, J. (2008). Half-sandwich iridium complexes—Synthesis and applications in catalysis. Coordination Chemistry Reviews, 252(5-7), 782-809. doi:10.1016/j.ccr.2008.01.015

Mizuta, T., Sakaguchi, S., & Ishii, Y. (2005). Catalytic Reductive Alkylation of Secondary Amine with Aldehyde and Silane by an Iridium Compound. The Journal of Organic Chemistry, 70(6), 2195-2199. doi:10.1021/jo0481708

Müller, T. E., Hultzsch, K. C., Yus, M., Foubelo, F., & Tada, M. (2008). Hydroamination: Direct Addition of Amines to Alkenes and Alkynes. Chemical Reviews, 108(9), 3795-3892. doi:10.1021/cr0306788

Nugent, T. C., & El-Shazly, M. (2010). Chiral Amine Synthesis - Recent Developments and Trends for Enamide Reduction, Reductive Amination, and Imine Reduction. Advanced Synthesis & Catalysis, 352(5), 753-819. doi:10.1002/adsc.200900719

Krüger, K., Tillack, A., & Beller, M. (2009). Recent Innovative Strategies for the Synthesis of Amines: From CN Bond Formation to CN Bond Activation. ChemSusChem, 2(8), 715-717. doi:10.1002/cssc.200900121

Ward, J., & Wohlgemuth, R. (2010). High-Yield Biocatalytic Amination Reactions in Organic Synthesis. Current Organic Chemistry, 14(17), 1914-1927. doi:10.2174/138527210792927546

Crozet, D., Urrutigoïty, M., & Kalck, P. (2011). Recent Advances in Amine Synthesis by Catalytic Hydroaminomethylation of Alkenes. ChemCatChem, 3(7), 1102-1118. doi:10.1002/cctc.201000411

Fujita, K., Asai, C., Yamaguchi, T., Hanasaka, F., & Yamaguchi, R. (2005). Direct β-Alkylation of Secondary Alcohols with Primary Alcohols Catalyzed by a Cp*Ir Complex. Organic Letters, 7(18), 4017-4019. doi:10.1021/ol051517o

Pontes da Costa, A., Viciano, M., Sanaú, M., Merino, S., Tejeda, J., Peris, E., & Royo, B. (2008). First Cp*-Functionalized N-Heterocyclic Carbene and Its Coordination to Iridium. Study of the Catalytic Properties. Organometallics, 27(6), 1305-1309. doi:10.1021/om701186u

Gnanamgari, D., Sauer, E. L. O., Schley, N. D., Butler, C., Incarvito, C. D., & Crabtree, R. H. (2009). Iridium and Ruthenium Complexes with Chelating N-Heterocyclic Carbenes: Efficient Catalysts for Transfer Hydrogenation, β-Alkylation of Alcohols, and N-Alkylation of Amines. Organometallics, 28(1), 321-325. doi:10.1021/om800821q

Gnanamgari, D., Leung, C. H., Schley, N. D., Hilton, S. T., & Crabtree, R. H. (2008). Alcohol cross-coupling reactions catalyzed by Ru and Ir terpyridine complexes. Organic & Biomolecular Chemistry, 6(23), 4442. doi:10.1039/b815547j

Allen, L. J., & Crabtree, R. H. (2010). Green alcohol couplings without transition metal catalysts: base-mediated β-alkylation of alcohols in aerobic conditions. Green Chemistry, 12(8), 1362. doi:10.1039/c0gc00079e

Da Costa, A. P., Sanaú, M., Peris, E., & Royo, B. (2009). Easy preparation of Cp*-functionalized N-heterocyclic carbenes and their coordination to rhodium and iridium. Dalton Transactions, (35), 6960. doi:10.1039/b901195a

Blank, B., Madalska, M., & Kempe, R. (2008). An Efficient Method for the Selective Iridium-Catalyzed Monoalkylation of (Hetero)aromatic Amines with Primary Alcohols. Advanced Synthesis & Catalysis, 350(5), 749-758. doi:10.1002/adsc.200700596

Prades, A., Corberán, R., Poyatos, M., & Peris, E. (2008). [IrCl2Cp*(NHC)] Complexes as Highly Versatile Efficient Catalysts for the Cross-Coupling of Alcohols and Amines. Chemistry - A European Journal, 14(36), 11474-11479. doi:10.1002/chem.200801580

Chang, Y.-H., Fu, C.-F., Liu, Y.-H., Peng, S.-M., Chen, J.-T., & Liu, S.-T. (2009). Synthesis, characterization and catalytic activity of saturated and unsaturated N-heterocyclic carbene iridium(i) complexes. Dalton Trans., (5), 861-867. doi:10.1039/b814234c

Blank, B., Michlik, S., & Kempe, R. (2009). Selective Iridium-Catalyzed Alkylation of (Hetero)Aromatic Amines and Diamines with Alcohols under Mild Reaction Conditions. Chemistry - A European Journal, 15(15), 3790-3799. doi:10.1002/chem.200802318

Michlik, S., & Kempe, R. (2010). New Iridium Catalysts for the Efficient Alkylation of Anilines by Alcohols under Mild Conditions. Chemistry - A European Journal, 16(44), 13193-13198. doi:10.1002/chem.201001871

Balcells, D., Nova, A., Clot, E., Gnanamgari, D., Crabtree, R. H., & Eisenstein, O. (2008). Mechanism of Homogeneous Iridium-Catalyzed Alkylation of Amines with Alcohols from a DFT Study. Organometallics, 27(11), 2529-2535. doi:10.1021/om800134d

Cho, C. S., Kim, B. T., Kim, H.-S., Kim, T.-J., & Shim, S. C. (2003). Ruthenium-Catalyzed One-Pot β-Alkylation of Secondary Alcohols with Primary Alcohols. Organometallics, 22(17), 3608-3610. doi:10.1021/om030307h

Milstein, D. (2010). Discovery of Environmentally Benign Catalytic Reactions of Alcohols Catalyzed by Pyridine-Based Pincer Ru Complexes, Based on Metal–Ligand Cooperation. Topics in Catalysis, 53(13-14), 915-923. doi:10.1007/s11244-010-9523-7

Musa, S., Fronton, S., Vaccaro, L., & Gelman, D. (2013). Bifunctional Ruthenium(II) PCP Pincer Complexes and Their Catalytic Activity in Acceptorless Dehydrogenative Reactions. Organometallics, 32(10), 3069-3073. doi:10.1021/om400285r

Martínez, R., Ramón, D. J., & Yus, M. (2006). RuCl2(DMSO)4 catalyzes the β-alkylation of secondary alcohols with primary alcohols through a hydrogen autotransfer process. Tetrahedron, 62(38), 8982-8987. doi:10.1016/j.tet.2006.07.012

Viciano, M., Sanaú, M., & Peris, E. (2007). Ruthenium Janus-Head Complexes with a Triazolediylidene Ligand. Structural Features and Catalytic Applications. Organometallics, 26(24), 6050-6054. doi:10.1021/om7007919

Prades, A., Viciano, M., Sanaú, M., & Peris, E. (2008). Preparation of a Series of «Ru(p-cymene)» Complexes with Different N-Heterocyclic Carbene Ligands for the Catalytic β-Alkylation of Secondary Alcohols and Dimerization of Phenylacetylene. Organometallics, 27(16), 4254-4259. doi:10.1021/om800377m

Kim, J. W., Yamaguchi, K., & Mizuno, N. (2009). Heterogeneously catalyzed selective N-alkylation of aromatic and heteroaromatic amines with alcohols by a supported ruthenium hydroxide. Journal of Catalysis, 263(1), 205-208. doi:10.1016/j.jcat.2009.01.020

Hamid, M. H. S. A., Allen, C. L., Lamb, G. W., Maxwell, A. C., Maytum, H. C., Watson, A. J. A., & Williams, J. M. J. (2009). Ruthenium-CatalyzedN-Alkylation of Amines and Sulfonamides Using Borrowing Hydrogen Methodology. Journal of the American Chemical Society, 131(5), 1766-1774. doi:10.1021/ja807323a

Bertoli, M., Choualeb, A., Lough, A. J., Moore, B., Spasyuk, D., & Gusev, D. G. (2011). Osmium and Ruthenium Catalysts for Dehydrogenation of Alcohols. Organometallics, 30(13), 3479-3482. doi:10.1021/om200437n

Grigg, R., Mitchell, T. R. B., Sutthivaiyakit, S., & Tongpenyai, N. (1981). Transition metal-catalysed N-alkylation of amines by alcohols. Journal of the Chemical Society, Chemical Communications, (12), 611. doi:10.1039/c39810000611

Zhang, Y., Qi, X., Cui, X., Shi, F., & Deng, Y. (2011). Palladium catalyzed N-alkylation of amines with alcohols. Tetrahedron Letters, 52(12), 1334-1338. doi:10.1016/j.tetlet.2011.01.059

Xie, Y., Liu, S., Liu, Y., Wen, Y., & Deng, G.-J. (2012). Palladium-Catalyzed One-Pot Diarylamine Formation from Nitroarenes and Cyclohexanones. Organic Letters, 14(7), 1692-1695. doi:10.1021/ol3002442

He, L., Lou, X.-B., Ni, J., Liu, Y.-M., Cao, Y., He, H.-Y., & Fan, K.-N. (2010). Efficient and Clean Gold-Catalyzed One-Pot Selective N-Alkylation of Amines with Alcohols. Chemistry - A European Journal, 16(47), 13965-13969. doi:10.1002/chem.201001848

Rice, R. G., & Kohn, E. J. (1955). Raney Nickel Catalyzed N-Alkylation of Aniline and Benzidine with Alcohols. Journal of the American Chemical Society, 77(15), 4052-4054. doi:10.1021/ja01620a026

Martínez-Asencio, A., Ramón, D. J., & Yus, M. (2010). N-Alkylation of poor nucleophilic amine and sulfonamide derivatives with alcohols by a hydrogen autotransfer process catalyzed by copper(II) acetate. Tetrahedron Letters, 51(2), 325-327. doi:10.1016/j.tetlet.2009.11.009

Martínez-Asencio, A., Ramón, D. J., & Yus, M. (2011). N-Alkylation of poor nucleophilic amines and derivatives with alcohols by a hydrogen autotransfer process catalyzed by copper(II) acetate: scope and mechanistic considerations. Tetrahedron, 67(17), 3140-3149. doi:10.1016/j.tet.2011.02.075

Zhao, Y., Foo, S. W., & Saito, S. (2011). Iron/Amino Acid Catalyzed Direct N-Alkylation of Amines with Alcohols. Angewandte Chemie International Edition, 50(13), 3006-3009. doi:10.1002/anie.201006660

Zhao, Y., Foo, S. W., & Saito, S. (2011). Iron/Amino Acid Catalyzed Direct N-Alkylation of Amines with Alcohols. Angewandte Chemie, 123(13), 3062-3065. doi:10.1002/ange.201006660

Esteruelas, M. A., Honczek, N., Oliván, M., Oñate, E., & Valencia, M. (2011). Direct Access to POP-Type Osmium(II) and Osmium(IV) Complexes: Osmium a Promising Alternative to Ruthenium for the Synthesis of Imines from Alcohols and Amines. Organometallics, 30(9), 2468-2471. doi:10.1021/om200290u

Guillena, G., Ramón, D. J., & Yus, M. (2009). Hydrogen Autotransfer in theN-Alkylation of Amines and Related Compounds using Alcohols and Amines as Electrophiles. Chemical Reviews, 110(3), 1611-1641. doi:10.1021/cr9002159

Horikawa, Y., Uchino, Y., & Sako, T. (2003). Alkylation and Acetal Formation Using Supercritical Alcohol without Catalyst. Chemistry Letters, 32(3), 232-233. doi:10.1246/cl.2003.232

Sprinzak, Y. (1956). Reduction and Benzylation by Means of Benzyl Alcohol. II. N-Benzylation. The Preparation of Secondary Aromatic Benzylamines. Journal of the American Chemical Society, 78(13), 3207-3208. doi:10.1021/ja01594a064

Iranpoor, N., Firouzabadi, H., Nowrouzi, N., & Khalili, D. (2009). Selective mono- and di-N-alkylation of aromatic amines with alcohols and acylation of aromatic amines using Ph3P/DDQ. Tetrahedron, 65(19), 3893-3899. doi:10.1016/j.tet.2009.02.078

Du, Y., Oishi, S., & Saito, S. (2011). Selective N-Alkylation of Amines with Alcohols by Using Non-Metal-Based Acid-Base Cooperative Catalysis. Chemistry - A European Journal, 17(44), 12262-12267. doi:10.1002/chem.201102446

Corma, A., Ródenas, T., & Sabater, M. (2010). A Bifunctional Pd/MgO Solid Catalyst for the One-Pot Selective N-Monoalkylation of Amines with Alcohols. Chemistry - A European Journal, 16(1), 254-260. doi:10.1002/chem.200901501

Cui, X., Zhang, Y., Shi, F., & Deng, Y. (2010). Organic Ligand-Free Alkylation of Amines, Carboxamides, Sulfonamides, and Ketones by Using Alcohols Catalyzed by Heterogeneous Ag/Mo Oxides. Chemistry - A European Journal, 17(3), 1021-1028. doi:10.1002/chem.201001915

Liu, H., Chuah, G.-K., & Jaenicke, S. (2012). N-alkylation of amines with alcohols over alumina-entrapped Ag catalysts using the «borrowing hydrogen» methodology. Journal of Catalysis, 292, 130-137. doi:10.1016/j.jcat.2012.05.007

Likhar, P. R., Arundhathi, R., Kantam, M. L., & Prathima, P. S. (2009). Amination of Alcohols Catalyzed by Copper-Aluminium Hydrotalcite: A Green Synthesis of Amines. European Journal of Organic Chemistry, 2009(31), 5383-5389. doi:10.1002/ejoc.200900628

Shi, F., Tse, M. K., Cui, X., Gördes, D., Michalik, D., Thurow, K., … Beller, M. (2009). Copper-Catalyzed Alkylation of Sulfonamides with Alcohols. Angewandte Chemie International Edition, 48(32), 5912-5915. doi:10.1002/anie.200901510

Shi, F., Tse, M. K., Cui, X., Gördes, D., Michalik, D., Thurow, K., … Beller, M. (2009). Copper-Catalyzed Alkylation of Sulfonamides with Alcohols. Angewandte Chemie, 121(32), 6026-6029. doi:10.1002/ange.200901510

Schaate, A., Roy, P., Godt, A., Lippke, J., Waltz, F., Wiebcke, M., & Behrens, P. (2011). Modulated Synthesis of Zr-Based Metal-Organic Frameworks: From Nano to Single Crystals. Chemistry - A European Journal, 17(24), 6643-6651. doi:10.1002/chem.201003211

Kandiah, M., Nilsen, M. H., Usseglio, S., Jakobsen, S., Olsbye, U., Tilset, M., … Lillerud, K. P. (2010). Synthesis and Stability of Tagged UiO-66 Zr-MOFs. Chemistry of Materials, 22(24), 6632-6640. doi:10.1021/cm102601v

Morris, W., Doonan, C. J., & Yaghi, O. M. (2011). Postsynthetic Modification of a Metal–Organic Framework for Stabilization of a Hemiaminal and Ammonia Uptake. Inorganic Chemistry, 50(15), 6853-6855. doi:10.1021/ic200744y

Vermoortele, F., Ameloot, R., Vimont, A., Serre, C., & De Vos, D. (2011). An amino-modified Zr-terephthalate metal–organic framework as an acid–base catalyst for cross-aldol condensation. Chem. Commun., 47(5), 1521-1523. doi:10.1039/c0cc03038d

Garibay, S. J., & Cohen, S. M. (2010). Isoreticular synthesis and modification of frameworks with the UiO-66 topology. Chemical Communications, 46(41), 7700. doi:10.1039/c0cc02990d

Pintado-Sierra, M., Rasero-Almansa, A. M., Corma, A., Iglesias, M., & Sánchez, F. (2013). Bifunctional iridium-(2-aminoterephthalate)–Zr-MOF chemoselective catalyst for the synthesis of secondary amines by one-pot three-step cascade reaction. Journal of Catalysis, 299, 137-145. doi:10.1016/j.jcat.2012.12.004

Rasero-Almansa, A. M., Corma, A., Iglesias, M., & Sánchez, F. (2013). One-Pot Multifunctional Catalysis with NNN-Pincer Zr-MOF: Zr Base Catalyzed Condensation with Rh-Catalyzed Hydrogenation. ChemCatChem, 5(10), 3092-3100. doi:10.1002/cctc.201300371

Cavka, J. H., Jakobsen, S., Olsbye, U., Guillou, N., Lamberti, C., Bordiga, S., & Lillerud, K. P. (2008). A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. Journal of the American Chemical Society, 130(42), 13850-13851. doi:10.1021/ja8057953

Kim, M., & Cohen, S. M. (2012). Discovery, development, and functionalization of Zr(iv)-based metal–organic frameworks. CrystEngComm, 14(12), 4096-4104. doi:10.1039/c2ce06491j

Campos, C., Torres, C., Oportus, M., Peña, M. A., Fierro, J. L. G., & Reyes, P. (2013). Hydrogenation of substituted aromatic nitrobenzenes over 1% 1.0wt.%Ir/ZrO2 catalyst: Effect of meta position and catalytic performance. Catalysis Today, 213, 93-100. doi:10.1016/j.cattod.2013.03.037

Hintermair, U., Sheehan, S. W., Parent, A. R., Ess, D. H., Richens, D. T., Vaccaro, P. H., … Crabtree, R. H. (2013). Precursor Transformation during Molecular Oxidation Catalysis with Organometallic Iridium Complexes. Journal of the American Chemical Society, 135(29), 10837-10851. doi:10.1021/ja4048762

Blanco, M., Álvarez, P., Blanco, C., Jiménez, M. V., Fernández-Tornos, J., Pérez-Torrente, J. J., … Menéndez, R. (2013). Enhanced Hydrogen-Transfer Catalytic Activity of Iridium N-Heterocyclic Carbenes by Covalent Attachment on Carbon Nanotubes. ACS Catalysis, 3(6), 1307-1317. doi:10.1021/cs4000798

Santos, L. L., Serna, P., & Corma, A. (2009). Chemoselective Synthesis of Substituted Imines, Secondary Amines, and β-Amino Carbonyl Compounds from Nitroaromatics through Cascade Reactions on Gold Catalysts. Chemistry - A European Journal, 15(33), 8196-8203. doi:10.1002/chem.200900884

Climent, M. J., Corma, A., Iborra, S., & Santos, L. L. (2009). Multisite Solid Catalyst for Cascade Reactions: The Direct Synthesis of Benzodiazepines from Nitro Compounds. Chemistry - A European Journal, 15(35), 8834-8841. doi:10.1002/chem.200900492

Pugin, B., Landert, H., Spindler, F., & Blaser, H.-U. (2002). More than 100,000 Turnovers with Immobilized Ir-Diphosphine Catalysts in an Enantioselective Imine Hydrogenation. Advanced Synthesis & Catalysis, 344(9), 974-979. doi:10.1002/1615-4169(200210)344:9<974::aid-adsc974>3.0.co;2-z

González-Arellano, C., Corma, A., Iglesias, M., & Sánchez, F. (2004). Improved Palladium and Nickel Catalysts Heterogenised on Oxidic Supports (Silica, MCM-41, ITQ-2, ITQ-6). Advanced Synthesis & Catalysis, 346(11), 1316-1328. doi:10.1002/adsc.200404029

Rubio-Marqués, P., Leyva-Pérez, A., & Corma, A. (2013). A bifunctional palladium/acid solid catalyst performs the direct synthesis of cyclohexylanilines and dicyclohexylamines from nitrobenzenes. Chemical Communications, 49(74), 8160. doi:10.1039/c3cc44064h

Corma, A., Ródenas, T., & Sabater, M. J. (2011). Monoalkylations with alcohols by a cascade reaction on bifunctional solid catalysts: Reaction kinetics and mechanism. Journal of Catalysis, 279(2), 319-327. doi:10.1016/j.jcat.2011.01.029

Watson, A. J. A., & Williams, J. M. J. (2010). The Give and Take of Alcohol Activation. Science, 329(5992), 635-636. doi:10.1126/science.1191843

Bähn, S., Imm, S., Neubert, L., Zhang, M., Neumann, H., & Beller, M. (2011). The Catalytic Amination of Alcohols. ChemCatChem, 3(12), 1853-1864. doi:10.1002/cctc.201100255

Jiménez, M. V., Fernández-Tornos, J., Pérez-Torrente, J. J., Modrego, F. J., Winterle, S., Cunchillos, C., … Oro, L. A. (2011). Iridium(I) Complexes with Hemilabile N-Heterocyclic Carbenes: Efficient and Versatile Transfer Hydrogenation Catalysts. Organometallics, 30(20), 5493-5508. doi:10.1021/om200747k

Del Pozo, C., Corma, A., Iglesias, M., & Sánchez, F. (2011). Recyclable mesoporous silica-supported chiral ruthenium-(NHC)NN-pincer catalysts for asymmetric reactions. Green Chemistry, 13(9), 2471. doi:10.1039/c1gc15412e

Fujita, K., Enoki, Y., & Yamaguchi, R. (2008). Cp∗Ir-catalyzed N-alkylation of amines with alcohols. A versatile and atom economical method for the synthesis of amines. Tetrahedron, 64(8), 1943-1954. doi:10.1016/j.tet.2007.11.083

Fristrup, P., Tursky, M., & Madsen, R. (2012). Mechanistic investigation of the iridium-catalysed alkylation of amines with alcohols. Organic & Biomolecular Chemistry, 10(13), 2569. doi:10.1039/c2ob06603c

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem