- -

Tracking systems for virtual rehabilitation: objective performance vs. subjective experience. A practical scenario

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Tracking systems for virtual rehabilitation: objective performance vs. subjective experience. A practical scenario

Mostrar el registro completo del ítem

Llorens Rodríguez, R.; Noé, E.; Naranjo Ornedo, V.; Borrego González, A.; Latorre, J.; Alcañiz Raya, ML. (2015). Tracking systems for virtual rehabilitation: objective performance vs. subjective experience. A practical scenario. Sensors. 15(3):6586-6606. https://doi.org/10.3390/s150306586

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/57729

Ficheros en el ítem

Metadatos del ítem

Título: Tracking systems for virtual rehabilitation: objective performance vs. subjective experience. A practical scenario
Autor: Llorens Rodríguez, Roberto Noé, Enrique Naranjo Ornedo, Valeriana Borrego González, Adrián Latorre, Jorge Alcañiz Raya, Mariano Luis
Entidad UPV: Universitat Politècnica de València. Instituto Interuniversitario de Investigación en Bioingeniería y Tecnología Orientada al Ser Humano - Institut Interuniversitari d'Investigació en Bioenginyeria i Tecnologia Orientada a l'Ésser Humà
Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Universitat Politècnica de València. Departamento de Ingeniería Gráfica - Departament d'Enginyeria Gràfica
Fecha difusión:
Resumen:
Motion tracking systems are commonly used in virtual reality-based interventions to detect movements in the real world and transfer them to the virtual environment. There are different tracking solutions based on different ...[+]
Palabras clave: Motion tracking , Virtual reality , Virtual rehabilitation , Optical tracking , Electromagnetic tracking , Kinect , Stroke
Derechos de uso: Reconocimiento (by)
Fuente:
Sensors. (eissn: 1424-8220 )
DOI: 10.3390/s150306586
Editorial:
MDPI
Versión del editor: http://dx.doi.org/10.3390/s150306586
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//TIN2013-44741-R/ES/REALIDAD VIRTUAL PARA LA COMPRENSION Y LA PROMOCION DE LOS MECANISMOS NEURALES DE INTERACCION Y REHABILITACION/
info:eu-repo/grantAgreement/MEC//SEJ2006-14301/ES/NUEVAS TECNOLOGIAS DE LA INFORMACION Y LA COMUNICACION: INTEGRACION Y CONSOLIDACION DE SU USO EN CIENCIAS SOCIALES PARA MEJORAR LA SALUD, LA CALIDAD DE VIDA Y EL BIENESTAR./
info:eu-repo/grantAgreement/GVA//PROMETEO08%2F2008%2F157/ES/Promoción del bienestar a través de las tecnologías de la información y comunicación (probientic)/
Agradecimientos:
The authors wish to thank the staff and patients of the Servicio de Neurorrehabilitacion y Dano Cerebral de los Hospitales NISA (Valencia, Spain) for their involvement in the study, particularly Maria Dolores Navarro for ...[+]
Tipo: Artículo

References

Sveistrup, H. (2004). Journal of NeuroEngineering and Rehabilitation, 1(1), 10. doi:10.1186/1743-0003-1-10

Rose, F. D., Brooks, B. M., & Rizzo, A. A. (2005). Virtual Reality in Brain Damage Rehabilitation: Review. CyberPsychology & Behavior, 8(3), 241-262. doi:10.1089/cpb.2005.8.241

Zhou, H., & Hu, H. (2008). Human motion tracking for rehabilitation—A survey. Biomedical Signal Processing and Control, 3(1), 1-18. doi:10.1016/j.bspc.2007.09.001 [+]
Sveistrup, H. (2004). Journal of NeuroEngineering and Rehabilitation, 1(1), 10. doi:10.1186/1743-0003-1-10

Rose, F. D., Brooks, B. M., & Rizzo, A. A. (2005). Virtual Reality in Brain Damage Rehabilitation: Review. CyberPsychology & Behavior, 8(3), 241-262. doi:10.1089/cpb.2005.8.241

Zhou, H., & Hu, H. (2008). Human motion tracking for rehabilitation—A survey. Biomedical Signal Processing and Control, 3(1), 1-18. doi:10.1016/j.bspc.2007.09.001

Plantard, P., Auvinet, E., Pierres, A.-S., & Multon, F. (2015). Pose Estimation with a Kinect for Ergonomic Studies: Evaluation of the Accuracy Using a Virtual Mannequin. Sensors, 15(1), 1785-1803. doi:10.3390/s150101785

De Joode, E. A., van Boxtel, M. P. J., Verhey, F. R., & van Heugten, C. M. (2012). Use of assistive technology in cognitive rehabilitation: Exploratory studies of the opinions and expectations of healthcare professionals and potential users. Brain Injury, 26(10), 1257-1266. doi:10.3109/02699052.2012.667590

Raab, F., Blood, E., Steiner, T., & Jones, H. (1979). Magnetic Position and Orientation Tracking System. IEEE Transactions on Aerospace and Electronic Systems, AES-15(5), 709-718. doi:10.1109/taes.1979.308860

PrimeSense. Carmine 1.08http://www.i3du.gr/pdf/primesense.pdf

Khoshelham, K., & Elberink, S. O. (2012). Accuracy and Resolution of Kinect Depth Data for Indoor Mapping Applications. Sensors, 12(2), 1437-1454. doi:10.3390/s120201437

Lloréns, R., Gil-Gómez, J.-A., Alcañiz, M., Colomer, C., & Noé, E. (2014). Improvement in balance using a virtual reality-based stepping exercise: a randomized controlled trial involving individuals with chronic stroke. Clinical Rehabilitation, 29(3), 261-268. doi:10.1177/0269215514543333

Lloréns, R., Noé, E., Colomer, C., & Alcañiz, M. (2015). Effectiveness, Usability, and Cost-Benefit of a Virtual Reality–Based Telerehabilitation Program for Balance Recovery After Stroke: A Randomized Controlled Trial. Archives of Physical Medicine and Rehabilitation, 96(3), 418-425.e2. doi:10.1016/j.apmr.2014.10.019

Smith, P. R. (1981). Bilinear interpolation of digital images. Ultramicroscopy, 6(1), 201-204. doi:10.1016/s0304-3991(81)80199-4

Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). «Mini-mental state». Journal of Psychiatric Research, 12(3), 189-198. doi:10.1016/0022-3956(75)90026-6

Tyson, S. F., & DeSouza, L. H. (2004). Development of the Brunel Balance Assessment: a new measure of balance disability post stroke. Clinical Rehabilitation, 18(7), 801-810. doi:10.1191/0269215504cr744oa

Page, A., De Rosario, H., Mata, V., Hoyos, J. V., & Porcar, R. (2006). Effect of marker cluster design on the accuracy of human movement analysis using stereophotogrammetry. Medical and Biological Engineering and Computing, 44(12), 1113-1119. doi:10.1007/s11517-006-0124-3

Han, C., Wang, Q., Meng, P., & Qi, M. (2012). Effects of intensity of arm training on hemiplegic upper extremity motor recovery in stroke patients: a randomized controlled trial. Clinical Rehabilitation, 27(1), 75-81. doi:10.1177/0269215512447223

Kwakkel, G., Wagenaar, R. C., Koelman, T. W., Lankhorst, G. J., & Koetsier, J. C. (1997). Effects of Intensity of Rehabilitation After Stroke. Stroke, 28(8), 1550-1556. doi:10.1161/01.str.28.8.1550

Kwakkel, G. (2006). Impact of intensity of practice after stroke: Issues for consideration. Disability and Rehabilitation, 28(13-14), 823-830. doi:10.1080/09638280500534861

Flaster, M., Sharma, A., & Rao, M. (2013). Poststroke Depression: A Review Emphasizing the Role of Prophylactic Treatment and Synergy with Treatment for Motor Recovery. Topics in Stroke Rehabilitation, 20(2), 139-150. doi:10.1310/tsr2002-139

Winstein, C. (1999). Motor learning after unilateral brain damage. Neuropsychologia, 37(8), 975-987. doi:10.1016/s0028-3932(98)00145-6

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem