- -

Tracking systems for virtual rehabilitation: objective performance vs. subjective experience. A practical scenario

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Tracking systems for virtual rehabilitation: objective performance vs. subjective experience. A practical scenario

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Llorens Rodríguez, Roberto es_ES
dc.contributor.author Noé, Enrique es_ES
dc.contributor.author Naranjo Ornedo, Valeriana es_ES
dc.contributor.author Borrego González, Adrián es_ES
dc.contributor.author Latorre, Jorge es_ES
dc.contributor.author Alcañiz Raya, Mariano Luis es_ES
dc.date.accessioned 2015-11-19T09:31:28Z
dc.date.available 2015-11-19T09:31:28Z
dc.date.issued 2015-03
dc.identifier.uri http://hdl.handle.net/10251/57729
dc.description.abstract Motion tracking systems are commonly used in virtual reality-based interventions to detect movements in the real world and transfer them to the virtual environment. There are different tracking solutions based on different physical principles, which mainly define their performance parameters. However, special requirements have to be considered for rehabilitation purposes. This paper studies and compares the accuracy and jitter of three tracking solutions (optical, electromagnetic, and skeleton tracking) in a practical scenario and analyzes the subjective perceptions of 19 healthy subjects, 22 stroke survivors, and 14 physical therapists. The optical tracking system provided the best accuracy (1.074 +/- 0.417 cm) while the electromagnetic device provided the most inaccurate results (11.027 +/- 2.364 cm). However, this tracking solution provided the best jitter values (0.324 +/- 0.093 cm), in contrast to the skeleton tracking, which had the worst results (1.522 +/- 0.858 cm). Healthy individuals and professionals preferred the skeleton tracking solution rather than the optical and electromagnetic solution (in that order). Individuals with stroke chose the optical solution over the other options. Our results show that subjective perceptions and preferences are far from being constant among different populations, thus suggesting that these considerations, together with the performance parameters, should be also taken into account when designing a rehabilitation system. es_ES
dc.description.sponsorship The authors wish to thank the staff and patients of the Servicio de Neurorrehabilitacion y Dano Cerebral de los Hospitales NISA (Valencia, Spain) for their involvement in the study, particularly Maria Dolores Navarro for her coordination and Joan Ferri for his confidence. The authors also wish to thank the staff of LabHuman (Valencia, Spain) for their support in this project, especially Jose Miguel Martinez and Jose Roda for their assistance. This study was funded in part by Ministerio de Economia y Competitividad of Spain (Project NeuroVR, TIN2013-44741-R), by Ministerio de Educacion y Ciencia Spain, Projects Consolider-C (SEJ2006-14301/PSIC), "CIBER of Physiopathology of Obesity and Nutrition, an initiative of ISCIII", and by the Excellence Research Program PROMETEO (Generalitat Valenciana. Conselleria de Educacion, 2008-157). en_EN
dc.language Inglés es_ES
dc.publisher MDPI es_ES
dc.relation.ispartof Sensors es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Motion tracking es_ES
dc.subject Virtual reality es_ES
dc.subject Virtual rehabilitation es_ES
dc.subject Optical tracking es_ES
dc.subject Electromagnetic tracking es_ES
dc.subject Kinect es_ES
dc.subject Stroke es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.subject.classification EXPRESION GRAFICA EN LA INGENIERIA es_ES
dc.title Tracking systems for virtual rehabilitation: objective performance vs. subjective experience. A practical scenario es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/s150306586
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2013-44741-R/ES/REALIDAD VIRTUAL PARA LA COMPRENSION Y LA PROMOCION DE LOS MECANISMOS NEURALES DE INTERACCION Y REHABILITACION/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//SEJ2006-14301/ES/NUEVAS TECNOLOGIAS DE LA INFORMACION Y LA COMUNICACION: INTEGRACION Y CONSOLIDACION DE SU USO EN CIENCIAS SOCIALES PARA MEJORAR LA SALUD, LA CALIDAD DE VIDA Y EL BIENESTAR./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO08%2F2008%2F157/ES/Promoción del bienestar a través de las tecnologías de la información y comunicación (probientic)/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Interuniversitario de Investigación en Bioingeniería y Tecnología Orientada al Ser Humano - Institut Interuniversitari d'Investigació en Bioenginyeria i Tecnologia Orientada a l'Ésser Humà es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Gráfica - Departament d'Enginyeria Gràfica es_ES
dc.description.bibliographicCitation Llorens Rodríguez, R.; Noé, E.; Naranjo Ornedo, V.; Borrego González, A.; Latorre, J.; Alcañiz Raya, ML. (2015). Tracking systems for virtual rehabilitation: objective performance vs. subjective experience. A practical scenario. Sensors. 15(3):6586-6606. https://doi.org/10.3390/s150306586 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.3390/s150306586 es_ES
dc.description.upvformatpinicio 6586 es_ES
dc.description.upvformatpfin 6606 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 15 es_ES
dc.description.issue 3 es_ES
dc.relation.senia 283461 es_ES
dc.identifier.eissn 1424-8220
dc.identifier.pmid 25808765 en_EN
dc.identifier.pmcid PMC4435107 en_EN
dc.contributor.funder Ministerio de Educación y Ciencia es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Centro de Investigación Biomédica en Red-Fisiopatología de la Obesidad y Nutrición
dc.description.references Sveistrup, H. (2004). Journal of NeuroEngineering and Rehabilitation, 1(1), 10. doi:10.1186/1743-0003-1-10 es_ES
dc.description.references Rose, F. D., Brooks, B. M., & Rizzo, A. A. (2005). Virtual Reality in Brain Damage Rehabilitation: Review. CyberPsychology & Behavior, 8(3), 241-262. doi:10.1089/cpb.2005.8.241 es_ES
dc.description.references Zhou, H., & Hu, H. (2008). Human motion tracking for rehabilitation—A survey. Biomedical Signal Processing and Control, 3(1), 1-18. doi:10.1016/j.bspc.2007.09.001 es_ES
dc.description.references Plantard, P., Auvinet, E., Pierres, A.-S., & Multon, F. (2015). Pose Estimation with a Kinect for Ergonomic Studies: Evaluation of the Accuracy Using a Virtual Mannequin. Sensors, 15(1), 1785-1803. doi:10.3390/s150101785 es_ES
dc.description.references De Joode, E. A., van Boxtel, M. P. J., Verhey, F. R., & van Heugten, C. M. (2012). Use of assistive technology in cognitive rehabilitation: Exploratory studies of the opinions and expectations of healthcare professionals and potential users. Brain Injury, 26(10), 1257-1266. doi:10.3109/02699052.2012.667590 es_ES
dc.description.references Raab, F., Blood, E., Steiner, T., & Jones, H. (1979). Magnetic Position and Orientation Tracking System. IEEE Transactions on Aerospace and Electronic Systems, AES-15(5), 709-718. doi:10.1109/taes.1979.308860 es_ES
dc.description.references PrimeSense. Carmine 1.08http://www.i3du.gr/pdf/primesense.pdf es_ES
dc.description.references Khoshelham, K., & Elberink, S. O. (2012). Accuracy and Resolution of Kinect Depth Data for Indoor Mapping Applications. Sensors, 12(2), 1437-1454. doi:10.3390/s120201437 es_ES
dc.description.references Lloréns, R., Gil-Gómez, J.-A., Alcañiz, M., Colomer, C., & Noé, E. (2014). Improvement in balance using a virtual reality-based stepping exercise: a randomized controlled trial involving individuals with chronic stroke. Clinical Rehabilitation, 29(3), 261-268. doi:10.1177/0269215514543333 es_ES
dc.description.references Lloréns, R., Noé, E., Colomer, C., & Alcañiz, M. (2015). Effectiveness, Usability, and Cost-Benefit of a Virtual Reality–Based Telerehabilitation Program for Balance Recovery After Stroke: A Randomized Controlled Trial. Archives of Physical Medicine and Rehabilitation, 96(3), 418-425.e2. doi:10.1016/j.apmr.2014.10.019 es_ES
dc.description.references Smith, P. R. (1981). Bilinear interpolation of digital images. Ultramicroscopy, 6(1), 201-204. doi:10.1016/s0304-3991(81)80199-4 es_ES
dc.description.references Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). «Mini-mental state». Journal of Psychiatric Research, 12(3), 189-198. doi:10.1016/0022-3956(75)90026-6 es_ES
dc.description.references Tyson, S. F., & DeSouza, L. H. (2004). Development of the Brunel Balance Assessment: a new measure of balance disability post stroke. Clinical Rehabilitation, 18(7), 801-810. doi:10.1191/0269215504cr744oa es_ES
dc.description.references Page, A., De Rosario, H., Mata, V., Hoyos, J. V., & Porcar, R. (2006). Effect of marker cluster design on the accuracy of human movement analysis using stereophotogrammetry. Medical and Biological Engineering and Computing, 44(12), 1113-1119. doi:10.1007/s11517-006-0124-3 es_ES
dc.description.references Han, C., Wang, Q., Meng, P., & Qi, M. (2012). Effects of intensity of arm training on hemiplegic upper extremity motor recovery in stroke patients: a randomized controlled trial. Clinical Rehabilitation, 27(1), 75-81. doi:10.1177/0269215512447223 es_ES
dc.description.references Kwakkel, G., Wagenaar, R. C., Koelman, T. W., Lankhorst, G. J., & Koetsier, J. C. (1997). Effects of Intensity of Rehabilitation After Stroke. Stroke, 28(8), 1550-1556. doi:10.1161/01.str.28.8.1550 es_ES
dc.description.references Kwakkel, G. (2006). Impact of intensity of practice after stroke: Issues for consideration. Disability and Rehabilitation, 28(13-14), 823-830. doi:10.1080/09638280500534861 es_ES
dc.description.references Flaster, M., Sharma, A., & Rao, M. (2013). Poststroke Depression: A Review Emphasizing the Role of Prophylactic Treatment and Synergy with Treatment for Motor Recovery. Topics in Stroke Rehabilitation, 20(2), 139-150. doi:10.1310/tsr2002-139 es_ES
dc.description.references Winstein, C. (1999). Motor learning after unilateral brain damage. Neuropsychologia, 37(8), 975-987. doi:10.1016/s0028-3932(98)00145-6 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem