Mostrar el registro sencillo del ítem
dc.contributor.author | Llorens Rodríguez, Roberto | es_ES |
dc.contributor.author | Noé, Enrique | es_ES |
dc.contributor.author | Naranjo Ornedo, Valeriana | es_ES |
dc.contributor.author | Borrego González, Adrián | es_ES |
dc.contributor.author | Latorre, Jorge | es_ES |
dc.contributor.author | Alcañiz Raya, Mariano Luis | es_ES |
dc.date.accessioned | 2015-11-19T09:31:28Z | |
dc.date.available | 2015-11-19T09:31:28Z | |
dc.date.issued | 2015-03 | |
dc.identifier.uri | http://hdl.handle.net/10251/57729 | |
dc.description.abstract | Motion tracking systems are commonly used in virtual reality-based interventions to detect movements in the real world and transfer them to the virtual environment. There are different tracking solutions based on different physical principles, which mainly define their performance parameters. However, special requirements have to be considered for rehabilitation purposes. This paper studies and compares the accuracy and jitter of three tracking solutions (optical, electromagnetic, and skeleton tracking) in a practical scenario and analyzes the subjective perceptions of 19 healthy subjects, 22 stroke survivors, and 14 physical therapists. The optical tracking system provided the best accuracy (1.074 +/- 0.417 cm) while the electromagnetic device provided the most inaccurate results (11.027 +/- 2.364 cm). However, this tracking solution provided the best jitter values (0.324 +/- 0.093 cm), in contrast to the skeleton tracking, which had the worst results (1.522 +/- 0.858 cm). Healthy individuals and professionals preferred the skeleton tracking solution rather than the optical and electromagnetic solution (in that order). Individuals with stroke chose the optical solution over the other options. Our results show that subjective perceptions and preferences are far from being constant among different populations, thus suggesting that these considerations, together with the performance parameters, should be also taken into account when designing a rehabilitation system. | es_ES |
dc.description.sponsorship | The authors wish to thank the staff and patients of the Servicio de Neurorrehabilitacion y Dano Cerebral de los Hospitales NISA (Valencia, Spain) for their involvement in the study, particularly Maria Dolores Navarro for her coordination and Joan Ferri for his confidence. The authors also wish to thank the staff of LabHuman (Valencia, Spain) for their support in this project, especially Jose Miguel Martinez and Jose Roda for their assistance. This study was funded in part by Ministerio de Economia y Competitividad of Spain (Project NeuroVR, TIN2013-44741-R), by Ministerio de Educacion y Ciencia Spain, Projects Consolider-C (SEJ2006-14301/PSIC), "CIBER of Physiopathology of Obesity and Nutrition, an initiative of ISCIII", and by the Excellence Research Program PROMETEO (Generalitat Valenciana. Conselleria de Educacion, 2008-157). | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | MDPI | es_ES |
dc.relation.ispartof | Sensors | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Motion tracking | es_ES |
dc.subject | Virtual reality | es_ES |
dc.subject | Virtual rehabilitation | es_ES |
dc.subject | Optical tracking | es_ES |
dc.subject | Electromagnetic tracking | es_ES |
dc.subject | Kinect | es_ES |
dc.subject | Stroke | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.subject.classification | EXPRESION GRAFICA EN LA INGENIERIA | es_ES |
dc.title | Tracking systems for virtual rehabilitation: objective performance vs. subjective experience. A practical scenario | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/s150306586 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TIN2013-44741-R/ES/REALIDAD VIRTUAL PARA LA COMPRENSION Y LA PROMOCION DE LOS MECANISMOS NEURALES DE INTERACCION Y REHABILITACION/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC//SEJ2006-14301/ES/NUEVAS TECNOLOGIAS DE LA INFORMACION Y LA COMUNICACION: INTEGRACION Y CONSOLIDACION DE SU USO EN CIENCIAS SOCIALES PARA MEJORAR LA SALUD, LA CALIDAD DE VIDA Y EL BIENESTAR./ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO08%2F2008%2F157/ES/Promoción del bienestar a través de las tecnologías de la información y comunicación (probientic)/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Interuniversitario de Investigación en Bioingeniería y Tecnología Orientada al Ser Humano - Institut Interuniversitari d'Investigació en Bioenginyeria i Tecnologia Orientada a l'Ésser Humà | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Gráfica - Departament d'Enginyeria Gràfica | es_ES |
dc.description.bibliographicCitation | Llorens Rodríguez, R.; Noé, E.; Naranjo Ornedo, V.; Borrego González, A.; Latorre, J.; Alcañiz Raya, ML. (2015). Tracking systems for virtual rehabilitation: objective performance vs. subjective experience. A practical scenario. Sensors. 15(3):6586-6606. https://doi.org/10.3390/s150306586 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.3390/s150306586 | es_ES |
dc.description.upvformatpinicio | 6586 | es_ES |
dc.description.upvformatpfin | 6606 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 15 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.senia | 283461 | es_ES |
dc.identifier.eissn | 1424-8220 | |
dc.identifier.pmid | 25808765 | en_EN |
dc.identifier.pmcid | PMC4435107 | en_EN |
dc.contributor.funder | Ministerio de Educación y Ciencia | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Centro de Investigación Biomédica en Red-Fisiopatología de la Obesidad y Nutrición | |
dc.description.references | Sveistrup, H. (2004). Journal of NeuroEngineering and Rehabilitation, 1(1), 10. doi:10.1186/1743-0003-1-10 | es_ES |
dc.description.references | Rose, F. D., Brooks, B. M., & Rizzo, A. A. (2005). Virtual Reality in Brain Damage Rehabilitation: Review. CyberPsychology & Behavior, 8(3), 241-262. doi:10.1089/cpb.2005.8.241 | es_ES |
dc.description.references | Zhou, H., & Hu, H. (2008). Human motion tracking for rehabilitation—A survey. Biomedical Signal Processing and Control, 3(1), 1-18. doi:10.1016/j.bspc.2007.09.001 | es_ES |
dc.description.references | Plantard, P., Auvinet, E., Pierres, A.-S., & Multon, F. (2015). Pose Estimation with a Kinect for Ergonomic Studies: Evaluation of the Accuracy Using a Virtual Mannequin. Sensors, 15(1), 1785-1803. doi:10.3390/s150101785 | es_ES |
dc.description.references | De Joode, E. A., van Boxtel, M. P. J., Verhey, F. R., & van Heugten, C. M. (2012). Use of assistive technology in cognitive rehabilitation: Exploratory studies of the opinions and expectations of healthcare professionals and potential users. Brain Injury, 26(10), 1257-1266. doi:10.3109/02699052.2012.667590 | es_ES |
dc.description.references | Raab, F., Blood, E., Steiner, T., & Jones, H. (1979). Magnetic Position and Orientation Tracking System. IEEE Transactions on Aerospace and Electronic Systems, AES-15(5), 709-718. doi:10.1109/taes.1979.308860 | es_ES |
dc.description.references | PrimeSense. Carmine 1.08http://www.i3du.gr/pdf/primesense.pdf | es_ES |
dc.description.references | Khoshelham, K., & Elberink, S. O. (2012). Accuracy and Resolution of Kinect Depth Data for Indoor Mapping Applications. Sensors, 12(2), 1437-1454. doi:10.3390/s120201437 | es_ES |
dc.description.references | Lloréns, R., Gil-Gómez, J.-A., Alcañiz, M., Colomer, C., & Noé, E. (2014). Improvement in balance using a virtual reality-based stepping exercise: a randomized controlled trial involving individuals with chronic stroke. Clinical Rehabilitation, 29(3), 261-268. doi:10.1177/0269215514543333 | es_ES |
dc.description.references | Lloréns, R., Noé, E., Colomer, C., & Alcañiz, M. (2015). Effectiveness, Usability, and Cost-Benefit of a Virtual Reality–Based Telerehabilitation Program for Balance Recovery After Stroke: A Randomized Controlled Trial. Archives of Physical Medicine and Rehabilitation, 96(3), 418-425.e2. doi:10.1016/j.apmr.2014.10.019 | es_ES |
dc.description.references | Smith, P. R. (1981). Bilinear interpolation of digital images. Ultramicroscopy, 6(1), 201-204. doi:10.1016/s0304-3991(81)80199-4 | es_ES |
dc.description.references | Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). «Mini-mental state». Journal of Psychiatric Research, 12(3), 189-198. doi:10.1016/0022-3956(75)90026-6 | es_ES |
dc.description.references | Tyson, S. F., & DeSouza, L. H. (2004). Development of the Brunel Balance Assessment: a new measure of balance disability post stroke. Clinical Rehabilitation, 18(7), 801-810. doi:10.1191/0269215504cr744oa | es_ES |
dc.description.references | Page, A., De Rosario, H., Mata, V., Hoyos, J. V., & Porcar, R. (2006). Effect of marker cluster design on the accuracy of human movement analysis using stereophotogrammetry. Medical and Biological Engineering and Computing, 44(12), 1113-1119. doi:10.1007/s11517-006-0124-3 | es_ES |
dc.description.references | Han, C., Wang, Q., Meng, P., & Qi, M. (2012). Effects of intensity of arm training on hemiplegic upper extremity motor recovery in stroke patients: a randomized controlled trial. Clinical Rehabilitation, 27(1), 75-81. doi:10.1177/0269215512447223 | es_ES |
dc.description.references | Kwakkel, G., Wagenaar, R. C., Koelman, T. W., Lankhorst, G. J., & Koetsier, J. C. (1997). Effects of Intensity of Rehabilitation After Stroke. Stroke, 28(8), 1550-1556. doi:10.1161/01.str.28.8.1550 | es_ES |
dc.description.references | Kwakkel, G. (2006). Impact of intensity of practice after stroke: Issues for consideration. Disability and Rehabilitation, 28(13-14), 823-830. doi:10.1080/09638280500534861 | es_ES |
dc.description.references | Flaster, M., Sharma, A., & Rao, M. (2013). Poststroke Depression: A Review Emphasizing the Role of Prophylactic Treatment and Synergy with Treatment for Motor Recovery. Topics in Stroke Rehabilitation, 20(2), 139-150. doi:10.1310/tsr2002-139 | es_ES |
dc.description.references | Winstein, C. (1999). Motor learning after unilateral brain damage. Neuropsychologia, 37(8), 975-987. doi:10.1016/s0028-3932(98)00145-6 | es_ES |