- -

Tunable wideband bandstop acoustic filter based on two-dimensional multiphysical phenomena periodic systems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Tunable wideband bandstop acoustic filter based on two-dimensional multiphysical phenomena periodic systems

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Romero García, Vicente es_ES
dc.contributor.author Sánchez Pérez, Juan Vicente es_ES
dc.contributor.author García-Raffi, L. M. es_ES
dc.date.accessioned 2015-11-19T14:42:34Z
dc.date.available 2015-11-19T14:42:34Z
dc.date.issued 2011
dc.identifier.issn 0021-8979
dc.identifier.uri http://hdl.handle.net/10251/57766
dc.description Copyright (2011) American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. along with the following message: The following article appeared in Journal of Applied Physics , Volume 110, Issue 1 and may be found at http://scitation.aip.org/content/aip/journal/jap/110/1/10.1063/1.3599886. Authors own version of final article on e-print servers es_ES
dc.description.abstract The physical properties of a periodic distribution of absorbent resonators is used in this work to design a tunable wideband bandstop acoustic filter. Analytical and numerical simulations as well as experimental validations show that the control of the resonances and the absorption of the scatterers along with their periodic arrangement in air introduce high technological possibilities to control noise. Sound manipulation is perhaps the most obvious application of the structures presented in this work. We apply this methodology to develop a device as an alternative to the conventional acoustic barriers with several properties from the acoustical point of view but also with additional esthetic and constructive characteristics. © 2011 American Institute of Physics. es_ES
dc.description.sponsorship This work was supported by MEC (Spanish Government) and FEDER funds, under Grant No. MAT2009-09438. en_EN
dc.language Inglés es_ES
dc.publisher American Institute of Physics (AIP) es_ES
dc.relation.ispartof Journal of Applied Physics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Acoustic barriers es_ES
dc.subject Acoustic filters es_ES
dc.subject Band-stop es_ES
dc.subject Experimental validations es_ES
dc.subject Multiphysical phenomena es_ES
dc.subject Periodic distribution es_ES
dc.subject Wide-band es_ES
dc.subject Absorption es_ES
dc.subject Acoustic resonators es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Tunable wideband bandstop acoustic filter based on two-dimensional multiphysical phenomena periodic systems es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1063/1.3599886
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2009-09438/ES/Optimizacion, Diseño Y Desarrollo Tecnologico De Dispositivos Basados En Cristales De Sonido Para Aplicaciones Medicas Y Medioambientales/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Romero García, V.; Sánchez Pérez, JV.; García-Raffi, LM. (2011). Tunable wideband bandstop acoustic filter based on two-dimensional multiphysical phenomena periodic systems. Journal of Applied Physics. 110(1):149041-149049. https://doi.org/10.1063/1.3599886 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1063/1.3599886 es_ES
dc.description.upvformatpinicio 149041 es_ES
dc.description.upvformatpfin 149049 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 110 es_ES
dc.description.issue 1 es_ES
dc.relation.senia 211039 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Yablonovitch, E. (1987). Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Physical Review Letters, 58(20), 2059-2062. doi:10.1103/physrevlett.58.2059 es_ES
dc.description.references John, S. (1987). Strong localization of photons in certain disordered dielectric superlattices. Physical Review Letters, 58(23), 2486-2489. doi:10.1103/physrevlett.58.2486 es_ES
dc.description.references Sigalas, M. M., & Economou, E. N. (1992). Elastic and acoustic wave band structure. Journal of Sound and Vibration, 158(2), 377-382. doi:10.1016/0022-460x(92)90059-7 es_ES
dc.description.references Kushwaha, M. S., Halevi, P., Dobrzynski, L., & Djafari-Rouhani, B. (1993). Acoustic band structure of periodic elastic composites. Physical Review Letters, 71(13), 2022-2025. doi:10.1103/physrevlett.71.2022 es_ES
dc.description.references Sigalas, M. M., Economou, E. N., & Kafesaki, M. (1994). Spectral gaps for electromagnetic and scalar waves: Possible explanation for certain differences. Physical Review B, 50(5), 3393-3396. doi:10.1103/physrevb.50.3393 es_ES
dc.description.references Economou, E. N., & Sigalas, M. M. (1993). Classical wave propagation in periodic structures: Cermet versus network topology. Physical Review B, 48(18), 13434-13438. doi:10.1103/physrevb.48.13434 es_ES
dc.description.references Martínez-Sala, R., Sancho, J., Sánchez, J. V., Gómez, V., Llinares, J., & Meseguer, F. (1995). Sound attenuation by sculpture. Nature, 378(6554), 241-241. doi:10.1038/378241a0 es_ES
dc.description.references Sanchez-Perez, J. V., Rubio, C., Martinez-Sala, R., Sanchez-Grandia, R., & Gomez, V. (2002). Acoustic barriers based on periodic arrays of scatterers. Applied Physics Letters, 81(27), 5240-5242. doi:10.1063/1.1533112 es_ES
dc.description.references Lai, Y., Zhang, X., & Zhang, Z.-Q. (2002). Large sonic band gaps in 12-fold quasicrystals. Journal of Applied Physics, 91(9), 6191-6193. doi:10.1063/1.1465114 es_ES
dc.description.references Romero-García, V., Sánchez-Pérez, J. V., García-Raffi, L. M., Herrero, J. M., García-Nieto, S., & Blasco, X. (2009). Hole distribution in phononic crystals: Design and optimization. The Journal of the Acoustical Society of America, 125(6), 3774-3783. doi:10.1121/1.3126948 es_ES
dc.description.references Herrero, J. M., García-Nieto, S., Blasco, X., Romero-García, V., Sánchez-Pérez, J. V., & Garcia-Raffi, L. M. (2008). Optimization of sonic crystal attenuation properties by ev-MOGA multiobjective evolutionary algorithm. Structural and Multidisciplinary Optimization, 39(2), 203-215. doi:10.1007/s00158-008-0323-7 es_ES
dc.description.references Castiñeira-Ibáñez, S., Romero-García, V., Sánchez-Pérez, J. V., & Garcia-Raffi, L. M. (2010). Overlapping of acoustic bandgaps using fractal geometries. EPL (Europhysics Letters), 92(2), 24007. doi:10.1209/0295-5075/92/24007 es_ES
dc.description.references Umnova, O., Attenborough, K., & Linton, C. M. (2006). Effects of porous covering on sound attenuation by periodic arrays of cylinders. The Journal of the Acoustical Society of America, 119(1), 278-284. doi:10.1121/1.2133715 es_ES
dc.description.references Movchan, A. B., & Guenneau, S. (2004). Split-ring resonators and localized modes. Physical Review B, 70(12). doi:10.1103/physrevb.70.125116 es_ES
dc.description.references Hu, X., Chan, C. T., & Zi, J. (2005). Two-dimensional sonic crystals with Helmholtz resonators. Physical Review E, 71(5). doi:10.1103/physreve.71.055601 es_ES
dc.description.references Sánchez-Dehesa, J., Garcia-Chocano, V. M., Torrent, D., Cervera, F., Cabrera, S., & Simon, F. (2011). Noise control by sonic crystal barriers made of recycled materials. The Journal of the Acoustical Society of America, 129(3), 1173-1183. doi:10.1121/1.3531815 es_ES
dc.description.references Krynkin, A., Umnova, O., Yung Boon Chong, A., Taherzadeh, S., & Attenborough, K. (2010). Predictions and measurements of sound transmission through a periodic array of elastic shells in air. The Journal of the Acoustical Society of America, 128(6), 3496-3506. doi:10.1121/1.3506342 es_ES
dc.description.references Pendry, J. B., Holden, A. J., Robbins, D. J., & Stewart, W. J. (1999). Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques, 47(11), 2075-2084. doi:10.1109/22.798002 es_ES
dc.description.references Yablonovitch, E., & Gmitter, T. J. (1989). Photonic band structure: The face-centered-cubic case. Physical Review Letters, 63(18), 1950-1953. doi:10.1103/physrevlett.63.1950 es_ES
dc.description.references Meade, R. D., Brommer, K. D., Rappe, A. M., & Joannopoulos, J. D. (1992). Existence of a photonic band gap in two dimensions. Applied Physics Letters, 61(4), 495-497. doi:10.1063/1.107868 es_ES
dc.description.references Kushwaha, M. S., Halevi, P., Martínez, G., Dobrzynski, L., & Djafari-Rouhani, B. (1994). Theory of acoustic band structure of periodic elastic composites. Physical Review B, 49(4), 2313-2322. doi:10.1103/physrevb.49.2313 es_ES
dc.description.references Laude, V., Achaoui, Y., Benchabane, S., & Khelif, A. (2009). Evanescent Bloch waves and the complex band structure of phononic crystals. Physical Review B, 80(9). doi:10.1103/physrevb.80.092301 es_ES
dc.description.references Romero-García, V., Sánchez-Pérez, J. V., & Garcia-Raffi, L. M. (2010). Evanescent modes in sonic crystals: Complex dispersion relation and supercell approximation. Journal of Applied Physics, 108(4), 044907. doi:10.1063/1.3466988 es_ES
dc.description.references Hussein, M. I. (2009). Theory of damped Bloch waves in elastic media. Physical Review B, 80(21). doi:10.1103/physrevb.80.212301 es_ES
dc.description.references Hussein, M. I., & Frazier, M. J. (2010). Band structure of phononic crystals with general damping. Journal of Applied Physics, 108(9), 093506. doi:10.1063/1.3498806 es_ES
dc.description.references Moiseyenko, R. P., & Laude, V. (2011). Material loss influence on the complex band structure and group velocity in phononic crystals. Physical Review B, 83(6). doi:10.1103/physrevb.83.064301 es_ES
dc.description.references Romero-García, V., Sánchez-Pérez, J. V., & Garcia-Raffi, L. M. (2010). Propagating and evanescent properties of double-point defects in sonic crystals. New Journal of Physics, 12(8), 083024. doi:10.1088/1367-2630/12/8/083024 es_ES
dc.description.references Tournat, V., Pagneux, V., Lafarge, D., & Jaouen, L. (2004). Multiple scattering of acoustic waves and porous absorbing media. Physical Review E, 70(2). doi:10.1103/physreve.70.026609 es_ES
dc.description.references Chen, Y.-Y., & Ye, Z. (2001). Theoretical analysis of acoustic stop bands in two-dimensional periodic scattering arrays. Physical Review E, 64(3). doi:10.1103/physreve.64.036616 es_ES
dc.description.references Ihlenburg, F. (Ed.). (1998). Finite Element Analysis of Acoustic Scattering. Applied Mathematical Sciences. doi:10.1007/b98828 es_ES
dc.description.references Berenger, J.-P. (1994). A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics, 114(2), 185-200. doi:10.1006/jcph.1994.1159 es_ES
dc.description.references HARARI, I., SLAVUTIN, M., & TURKEL, E. (2000). ANALYTICAL AND NUMERICAL STUDIES OF A FINITE ELEMENT PML FOR THE HELMHOLTZ EQUATION. Journal of Computational Acoustics, 08(01), 121-137. doi:10.1142/s0218396x0000008x es_ES
dc.description.references Qi, Q., & Geers, T. L. (1998). Evaluation of the Perfectly Matched Layer for Computational Acoustics. Journal of Computational Physics, 139(1), 166-183. doi:10.1006/jcph.1997.5868 es_ES
dc.description.references Basu, U., & Chopra, A. K. (2003). Perfectly matched layers for time-harmonic elastodynamics of unbounded domains: theory and finite-element implementation. Computer Methods in Applied Mechanics and Engineering, 192(11-12), 1337-1375. doi:10.1016/s0045-7825(02)00642-4 es_ES
dc.description.references Zeng, Y. Q., He, J. Q., & Liu, Q. H. (2001). The application of the perfectly matched layer in numerical modeling of wave propagation in poroelastic media. GEOPHYSICS, 66(4), 1258-1266. doi:10.1190/1.1487073 es_ES
dc.description.references Lions, J.-L., Métral, J., & Vacus, O. (2002). Well-posed absorbing layer for hyperbolic problems. Numerische Mathematik, 92(3), 535-562. doi:10.1007/s002110100263 es_ES
dc.description.references Liu, Q. H. (1999). Perfectly matched layers for elastic waves in cylindrical and spherical coordinates. The Journal of the Acoustical Society of America, 105(4), 2075-2084. doi:10.1121/1.426812 es_ES
dc.description.references Lassas, M., & Somersalo, E. (1998). On the existence and convergence of the solution of PML equations. Computing, 60(3), 229-241. doi:10.1007/bf02684334 es_ES
dc.description.references Hohage, T., Schmidt, F., & Zschiedrich, L. (2003). Solving Time-Harmonic Scattering Problems Based on the Pole Condition II: Convergence of the PML Method. SIAM Journal on Mathematical Analysis, 35(3), 547-560. doi:10.1137/s0036141002406485 es_ES
dc.description.references Mechel, F. P. (Ed.). (2008). Formulas of Acoustics. doi:10.1007/978-3-540-76833-3 es_ES
dc.description.references Martínez-Sala, R., Rubio, C., García-Raffi, L. M., Sánchez-Pérez, J. V., Sánchez-Pérez, E. A., & Llinares, J. (2006). Control of noise by trees arranged like sonic crystals. Journal of Sound and Vibration, 291(1-2), 100-106. doi:10.1016/j.jsv.2005.05.030 es_ES
dc.description.references Romero-García, V., Sánchez-Pérez, J. V., Castiñeira-Ibáñez, S., & Garcia-Raffi, L. M. (2010). Evidences of evanescent Bloch waves in phononic crystals. Applied Physics Letters, 96(12), 124102. doi:10.1063/1.3367739 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem