Mostrar el registro sencillo del ítem
dc.contributor.author | Romero García, Vicente | es_ES |
dc.contributor.author | Sánchez Pérez, Juan Vicente | es_ES |
dc.contributor.author | García-Raffi, L. M. | es_ES |
dc.date.accessioned | 2015-11-19T14:42:34Z | |
dc.date.available | 2015-11-19T14:42:34Z | |
dc.date.issued | 2011 | |
dc.identifier.issn | 0021-8979 | |
dc.identifier.uri | http://hdl.handle.net/10251/57766 | |
dc.description | Copyright (2011) American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. along with the following message: The following article appeared in Journal of Applied Physics , Volume 110, Issue 1 and may be found at http://scitation.aip.org/content/aip/journal/jap/110/1/10.1063/1.3599886. Authors own version of final article on e-print servers | es_ES |
dc.description.abstract | The physical properties of a periodic distribution of absorbent resonators is used in this work to design a tunable wideband bandstop acoustic filter. Analytical and numerical simulations as well as experimental validations show that the control of the resonances and the absorption of the scatterers along with their periodic arrangement in air introduce high technological possibilities to control noise. Sound manipulation is perhaps the most obvious application of the structures presented in this work. We apply this methodology to develop a device as an alternative to the conventional acoustic barriers with several properties from the acoustical point of view but also with additional esthetic and constructive characteristics. © 2011 American Institute of Physics. | es_ES |
dc.description.sponsorship | This work was supported by MEC (Spanish Government) and FEDER funds, under Grant No. MAT2009-09438. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | American Institute of Physics (AIP) | es_ES |
dc.relation.ispartof | Journal of Applied Physics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Acoustic barriers | es_ES |
dc.subject | Acoustic filters | es_ES |
dc.subject | Band-stop | es_ES |
dc.subject | Experimental validations | es_ES |
dc.subject | Multiphysical phenomena | es_ES |
dc.subject | Periodic distribution | es_ES |
dc.subject | Wide-band | es_ES |
dc.subject | Absorption | es_ES |
dc.subject | Acoustic resonators | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Tunable wideband bandstop acoustic filter based on two-dimensional multiphysical phenomena periodic systems | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1063/1.3599886 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MAT2009-09438/ES/Optimizacion, Diseño Y Desarrollo Tecnologico De Dispositivos Basados En Cristales De Sonido Para Aplicaciones Medicas Y Medioambientales/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Romero García, V.; Sánchez Pérez, JV.; García-Raffi, LM. (2011). Tunable wideband bandstop acoustic filter based on two-dimensional multiphysical phenomena periodic systems. Journal of Applied Physics. 110(1):149041-149049. https://doi.org/10.1063/1.3599886 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1063/1.3599886 | es_ES |
dc.description.upvformatpinicio | 149041 | es_ES |
dc.description.upvformatpfin | 149049 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 110 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.senia | 211039 | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Yablonovitch, E. (1987). Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Physical Review Letters, 58(20), 2059-2062. doi:10.1103/physrevlett.58.2059 | es_ES |
dc.description.references | John, S. (1987). Strong localization of photons in certain disordered dielectric superlattices. Physical Review Letters, 58(23), 2486-2489. doi:10.1103/physrevlett.58.2486 | es_ES |
dc.description.references | Sigalas, M. M., & Economou, E. N. (1992). Elastic and acoustic wave band structure. Journal of Sound and Vibration, 158(2), 377-382. doi:10.1016/0022-460x(92)90059-7 | es_ES |
dc.description.references | Kushwaha, M. S., Halevi, P., Dobrzynski, L., & Djafari-Rouhani, B. (1993). Acoustic band structure of periodic elastic composites. Physical Review Letters, 71(13), 2022-2025. doi:10.1103/physrevlett.71.2022 | es_ES |
dc.description.references | Sigalas, M. M., Economou, E. N., & Kafesaki, M. (1994). Spectral gaps for electromagnetic and scalar waves: Possible explanation for certain differences. Physical Review B, 50(5), 3393-3396. doi:10.1103/physrevb.50.3393 | es_ES |
dc.description.references | Economou, E. N., & Sigalas, M. M. (1993). Classical wave propagation in periodic structures: Cermet versus network topology. Physical Review B, 48(18), 13434-13438. doi:10.1103/physrevb.48.13434 | es_ES |
dc.description.references | Martínez-Sala, R., Sancho, J., Sánchez, J. V., Gómez, V., Llinares, J., & Meseguer, F. (1995). Sound attenuation by sculpture. Nature, 378(6554), 241-241. doi:10.1038/378241a0 | es_ES |
dc.description.references | Sanchez-Perez, J. V., Rubio, C., Martinez-Sala, R., Sanchez-Grandia, R., & Gomez, V. (2002). Acoustic barriers based on periodic arrays of scatterers. Applied Physics Letters, 81(27), 5240-5242. doi:10.1063/1.1533112 | es_ES |
dc.description.references | Lai, Y., Zhang, X., & Zhang, Z.-Q. (2002). Large sonic band gaps in 12-fold quasicrystals. Journal of Applied Physics, 91(9), 6191-6193. doi:10.1063/1.1465114 | es_ES |
dc.description.references | Romero-García, V., Sánchez-Pérez, J. V., García-Raffi, L. M., Herrero, J. M., García-Nieto, S., & Blasco, X. (2009). Hole distribution in phononic crystals: Design and optimization. The Journal of the Acoustical Society of America, 125(6), 3774-3783. doi:10.1121/1.3126948 | es_ES |
dc.description.references | Herrero, J. M., García-Nieto, S., Blasco, X., Romero-García, V., Sánchez-Pérez, J. V., & Garcia-Raffi, L. M. (2008). Optimization of sonic crystal attenuation properties by ev-MOGA multiobjective evolutionary algorithm. Structural and Multidisciplinary Optimization, 39(2), 203-215. doi:10.1007/s00158-008-0323-7 | es_ES |
dc.description.references | Castiñeira-Ibáñez, S., Romero-García, V., Sánchez-Pérez, J. V., & Garcia-Raffi, L. M. (2010). Overlapping of acoustic bandgaps using fractal geometries. EPL (Europhysics Letters), 92(2), 24007. doi:10.1209/0295-5075/92/24007 | es_ES |
dc.description.references | Umnova, O., Attenborough, K., & Linton, C. M. (2006). Effects of porous covering on sound attenuation by periodic arrays of cylinders. The Journal of the Acoustical Society of America, 119(1), 278-284. doi:10.1121/1.2133715 | es_ES |
dc.description.references | Movchan, A. B., & Guenneau, S. (2004). Split-ring resonators and localized modes. Physical Review B, 70(12). doi:10.1103/physrevb.70.125116 | es_ES |
dc.description.references | Hu, X., Chan, C. T., & Zi, J. (2005). Two-dimensional sonic crystals with Helmholtz resonators. Physical Review E, 71(5). doi:10.1103/physreve.71.055601 | es_ES |
dc.description.references | Sánchez-Dehesa, J., Garcia-Chocano, V. M., Torrent, D., Cervera, F., Cabrera, S., & Simon, F. (2011). Noise control by sonic crystal barriers made of recycled materials. The Journal of the Acoustical Society of America, 129(3), 1173-1183. doi:10.1121/1.3531815 | es_ES |
dc.description.references | Krynkin, A., Umnova, O., Yung Boon Chong, A., Taherzadeh, S., & Attenborough, K. (2010). Predictions and measurements of sound transmission through a periodic array of elastic shells in air. The Journal of the Acoustical Society of America, 128(6), 3496-3506. doi:10.1121/1.3506342 | es_ES |
dc.description.references | Pendry, J. B., Holden, A. J., Robbins, D. J., & Stewart, W. J. (1999). Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques, 47(11), 2075-2084. doi:10.1109/22.798002 | es_ES |
dc.description.references | Yablonovitch, E., & Gmitter, T. J. (1989). Photonic band structure: The face-centered-cubic case. Physical Review Letters, 63(18), 1950-1953. doi:10.1103/physrevlett.63.1950 | es_ES |
dc.description.references | Meade, R. D., Brommer, K. D., Rappe, A. M., & Joannopoulos, J. D. (1992). Existence of a photonic band gap in two dimensions. Applied Physics Letters, 61(4), 495-497. doi:10.1063/1.107868 | es_ES |
dc.description.references | Kushwaha, M. S., Halevi, P., Martínez, G., Dobrzynski, L., & Djafari-Rouhani, B. (1994). Theory of acoustic band structure of periodic elastic composites. Physical Review B, 49(4), 2313-2322. doi:10.1103/physrevb.49.2313 | es_ES |
dc.description.references | Laude, V., Achaoui, Y., Benchabane, S., & Khelif, A. (2009). Evanescent Bloch waves and the complex band structure of phononic crystals. Physical Review B, 80(9). doi:10.1103/physrevb.80.092301 | es_ES |
dc.description.references | Romero-García, V., Sánchez-Pérez, J. V., & Garcia-Raffi, L. M. (2010). Evanescent modes in sonic crystals: Complex dispersion relation and supercell approximation. Journal of Applied Physics, 108(4), 044907. doi:10.1063/1.3466988 | es_ES |
dc.description.references | Hussein, M. I. (2009). Theory of damped Bloch waves in elastic media. Physical Review B, 80(21). doi:10.1103/physrevb.80.212301 | es_ES |
dc.description.references | Hussein, M. I., & Frazier, M. J. (2010). Band structure of phononic crystals with general damping. Journal of Applied Physics, 108(9), 093506. doi:10.1063/1.3498806 | es_ES |
dc.description.references | Moiseyenko, R. P., & Laude, V. (2011). Material loss influence on the complex band structure and group velocity in phononic crystals. Physical Review B, 83(6). doi:10.1103/physrevb.83.064301 | es_ES |
dc.description.references | Romero-García, V., Sánchez-Pérez, J. V., & Garcia-Raffi, L. M. (2010). Propagating and evanescent properties of double-point defects in sonic crystals. New Journal of Physics, 12(8), 083024. doi:10.1088/1367-2630/12/8/083024 | es_ES |
dc.description.references | Tournat, V., Pagneux, V., Lafarge, D., & Jaouen, L. (2004). Multiple scattering of acoustic waves and porous absorbing media. Physical Review E, 70(2). doi:10.1103/physreve.70.026609 | es_ES |
dc.description.references | Chen, Y.-Y., & Ye, Z. (2001). Theoretical analysis of acoustic stop bands in two-dimensional periodic scattering arrays. Physical Review E, 64(3). doi:10.1103/physreve.64.036616 | es_ES |
dc.description.references | Ihlenburg, F. (Ed.). (1998). Finite Element Analysis of Acoustic Scattering. Applied Mathematical Sciences. doi:10.1007/b98828 | es_ES |
dc.description.references | Berenger, J.-P. (1994). A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics, 114(2), 185-200. doi:10.1006/jcph.1994.1159 | es_ES |
dc.description.references | HARARI, I., SLAVUTIN, M., & TURKEL, E. (2000). ANALYTICAL AND NUMERICAL STUDIES OF A FINITE ELEMENT PML FOR THE HELMHOLTZ EQUATION. Journal of Computational Acoustics, 08(01), 121-137. doi:10.1142/s0218396x0000008x | es_ES |
dc.description.references | Qi, Q., & Geers, T. L. (1998). Evaluation of the Perfectly Matched Layer for Computational Acoustics. Journal of Computational Physics, 139(1), 166-183. doi:10.1006/jcph.1997.5868 | es_ES |
dc.description.references | Basu, U., & Chopra, A. K. (2003). Perfectly matched layers for time-harmonic elastodynamics of unbounded domains: theory and finite-element implementation. Computer Methods in Applied Mechanics and Engineering, 192(11-12), 1337-1375. doi:10.1016/s0045-7825(02)00642-4 | es_ES |
dc.description.references | Zeng, Y. Q., He, J. Q., & Liu, Q. H. (2001). The application of the perfectly matched layer in numerical modeling of wave propagation in poroelastic media. GEOPHYSICS, 66(4), 1258-1266. doi:10.1190/1.1487073 | es_ES |
dc.description.references | Lions, J.-L., Métral, J., & Vacus, O. (2002). Well-posed absorbing layer for hyperbolic problems. Numerische Mathematik, 92(3), 535-562. doi:10.1007/s002110100263 | es_ES |
dc.description.references | Liu, Q. H. (1999). Perfectly matched layers for elastic waves in cylindrical and spherical coordinates. The Journal of the Acoustical Society of America, 105(4), 2075-2084. doi:10.1121/1.426812 | es_ES |
dc.description.references | Lassas, M., & Somersalo, E. (1998). On the existence and convergence of the solution of PML equations. Computing, 60(3), 229-241. doi:10.1007/bf02684334 | es_ES |
dc.description.references | Hohage, T., Schmidt, F., & Zschiedrich, L. (2003). Solving Time-Harmonic Scattering Problems Based on the Pole Condition II: Convergence of the PML Method. SIAM Journal on Mathematical Analysis, 35(3), 547-560. doi:10.1137/s0036141002406485 | es_ES |
dc.description.references | Mechel, F. P. (Ed.). (2008). Formulas of Acoustics. doi:10.1007/978-3-540-76833-3 | es_ES |
dc.description.references | Martínez-Sala, R., Rubio, C., García-Raffi, L. M., Sánchez-Pérez, J. V., Sánchez-Pérez, E. A., & Llinares, J. (2006). Control of noise by trees arranged like sonic crystals. Journal of Sound and Vibration, 291(1-2), 100-106. doi:10.1016/j.jsv.2005.05.030 | es_ES |
dc.description.references | Romero-García, V., Sánchez-Pérez, J. V., Castiñeira-Ibáñez, S., & Garcia-Raffi, L. M. (2010). Evidences of evanescent Bloch waves in phononic crystals. Applied Physics Letters, 96(12), 124102. doi:10.1063/1.3367739 | es_ES |