- -

Tunable wideband bandstop acoustic filter based on two-dimensional multiphysical phenomena periodic systems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Tunable wideband bandstop acoustic filter based on two-dimensional multiphysical phenomena periodic systems

Mostrar el registro completo del ítem

Romero García, V.; Sánchez Pérez, JV.; García-Raffi, LM. (2011). Tunable wideband bandstop acoustic filter based on two-dimensional multiphysical phenomena periodic systems. Journal of Applied Physics. 110(1):149041-149049. https://doi.org/10.1063/1.3599886

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/57766

Ficheros en el ítem

Metadatos del ítem

Título: Tunable wideband bandstop acoustic filter based on two-dimensional multiphysical phenomena periodic systems
Autor: Romero García, Vicente Sánchez Pérez, Juan Vicente García-Raffi, L. M.
Entidad UPV: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
The physical properties of a periodic distribution of absorbent resonators is used in this work to design a tunable wideband bandstop acoustic filter. Analytical and numerical simulations as well as experimental validations ...[+]
Palabras clave: Acoustic barriers , Acoustic filters , Band-stop , Experimental validations , Multiphysical phenomena , Periodic distribution , Wide-band , Absorption , Acoustic resonators
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of Applied Physics. (issn: 0021-8979 )
DOI: 10.1063/1.3599886
Editorial:
American Institute of Physics (AIP)
Versión del editor: http://dx.doi.org/10.1063/1.3599886
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//MAT2009-09438/ES/Optimizacion, Diseño Y Desarrollo Tecnologico De Dispositivos Basados En Cristales De Sonido Para Aplicaciones Medicas Y Medioambientales/
Descripción: Copyright (2011) American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. along with the following message: The following article appeared in Journal of Applied Physics , Volume 110, Issue 1 and may be found at http://scitation.aip.org/content/aip/journal/jap/110/1/10.1063/1.3599886. Authors own version of final article on e-print servers
Agradecimientos:
This work was supported by MEC (Spanish Government) and FEDER funds, under Grant No. MAT2009-09438.
Tipo: Artículo

References

Yablonovitch, E. (1987). Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Physical Review Letters, 58(20), 2059-2062. doi:10.1103/physrevlett.58.2059

John, S. (1987). Strong localization of photons in certain disordered dielectric superlattices. Physical Review Letters, 58(23), 2486-2489. doi:10.1103/physrevlett.58.2486

Sigalas, M. M., & Economou, E. N. (1992). Elastic and acoustic wave band structure. Journal of Sound and Vibration, 158(2), 377-382. doi:10.1016/0022-460x(92)90059-7 [+]
Yablonovitch, E. (1987). Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Physical Review Letters, 58(20), 2059-2062. doi:10.1103/physrevlett.58.2059

John, S. (1987). Strong localization of photons in certain disordered dielectric superlattices. Physical Review Letters, 58(23), 2486-2489. doi:10.1103/physrevlett.58.2486

Sigalas, M. M., & Economou, E. N. (1992). Elastic and acoustic wave band structure. Journal of Sound and Vibration, 158(2), 377-382. doi:10.1016/0022-460x(92)90059-7

Kushwaha, M. S., Halevi, P., Dobrzynski, L., & Djafari-Rouhani, B. (1993). Acoustic band structure of periodic elastic composites. Physical Review Letters, 71(13), 2022-2025. doi:10.1103/physrevlett.71.2022

Sigalas, M. M., Economou, E. N., & Kafesaki, M. (1994). Spectral gaps for electromagnetic and scalar waves: Possible explanation for certain differences. Physical Review B, 50(5), 3393-3396. doi:10.1103/physrevb.50.3393

Economou, E. N., & Sigalas, M. M. (1993). Classical wave propagation in periodic structures: Cermet versus network topology. Physical Review B, 48(18), 13434-13438. doi:10.1103/physrevb.48.13434

Martínez-Sala, R., Sancho, J., Sánchez, J. V., Gómez, V., Llinares, J., & Meseguer, F. (1995). Sound attenuation by sculpture. Nature, 378(6554), 241-241. doi:10.1038/378241a0

Sanchez-Perez, J. V., Rubio, C., Martinez-Sala, R., Sanchez-Grandia, R., & Gomez, V. (2002). Acoustic barriers based on periodic arrays of scatterers. Applied Physics Letters, 81(27), 5240-5242. doi:10.1063/1.1533112

Lai, Y., Zhang, X., & Zhang, Z.-Q. (2002). Large sonic band gaps in 12-fold quasicrystals. Journal of Applied Physics, 91(9), 6191-6193. doi:10.1063/1.1465114

Romero-García, V., Sánchez-Pérez, J. V., García-Raffi, L. M., Herrero, J. M., García-Nieto, S., & Blasco, X. (2009). Hole distribution in phononic crystals: Design and optimization. The Journal of the Acoustical Society of America, 125(6), 3774-3783. doi:10.1121/1.3126948

Herrero, J. M., García-Nieto, S., Blasco, X., Romero-García, V., Sánchez-Pérez, J. V., & Garcia-Raffi, L. M. (2008). Optimization of sonic crystal attenuation properties by ev-MOGA multiobjective evolutionary algorithm. Structural and Multidisciplinary Optimization, 39(2), 203-215. doi:10.1007/s00158-008-0323-7

Castiñeira-Ibáñez, S., Romero-García, V., Sánchez-Pérez, J. V., & Garcia-Raffi, L. M. (2010). Overlapping of acoustic bandgaps using fractal geometries. EPL (Europhysics Letters), 92(2), 24007. doi:10.1209/0295-5075/92/24007

Umnova, O., Attenborough, K., & Linton, C. M. (2006). Effects of porous covering on sound attenuation by periodic arrays of cylinders. The Journal of the Acoustical Society of America, 119(1), 278-284. doi:10.1121/1.2133715

Movchan, A. B., & Guenneau, S. (2004). Split-ring resonators and localized modes. Physical Review B, 70(12). doi:10.1103/physrevb.70.125116

Hu, X., Chan, C. T., & Zi, J. (2005). Two-dimensional sonic crystals with Helmholtz resonators. Physical Review E, 71(5). doi:10.1103/physreve.71.055601

Sánchez-Dehesa, J., Garcia-Chocano, V. M., Torrent, D., Cervera, F., Cabrera, S., & Simon, F. (2011). Noise control by sonic crystal barriers made of recycled materials. The Journal of the Acoustical Society of America, 129(3), 1173-1183. doi:10.1121/1.3531815

Krynkin, A., Umnova, O., Yung Boon Chong, A., Taherzadeh, S., & Attenborough, K. (2010). Predictions and measurements of sound transmission through a periodic array of elastic shells in air. The Journal of the Acoustical Society of America, 128(6), 3496-3506. doi:10.1121/1.3506342

Pendry, J. B., Holden, A. J., Robbins, D. J., & Stewart, W. J. (1999). Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques, 47(11), 2075-2084. doi:10.1109/22.798002

Yablonovitch, E., & Gmitter, T. J. (1989). Photonic band structure: The face-centered-cubic case. Physical Review Letters, 63(18), 1950-1953. doi:10.1103/physrevlett.63.1950

Meade, R. D., Brommer, K. D., Rappe, A. M., & Joannopoulos, J. D. (1992). Existence of a photonic band gap in two dimensions. Applied Physics Letters, 61(4), 495-497. doi:10.1063/1.107868

Kushwaha, M. S., Halevi, P., Martínez, G., Dobrzynski, L., & Djafari-Rouhani, B. (1994). Theory of acoustic band structure of periodic elastic composites. Physical Review B, 49(4), 2313-2322. doi:10.1103/physrevb.49.2313

Laude, V., Achaoui, Y., Benchabane, S., & Khelif, A. (2009). Evanescent Bloch waves and the complex band structure of phononic crystals. Physical Review B, 80(9). doi:10.1103/physrevb.80.092301

Romero-García, V., Sánchez-Pérez, J. V., & Garcia-Raffi, L. M. (2010). Evanescent modes in sonic crystals: Complex dispersion relation and supercell approximation. Journal of Applied Physics, 108(4), 044907. doi:10.1063/1.3466988

Hussein, M. I. (2009). Theory of damped Bloch waves in elastic media. Physical Review B, 80(21). doi:10.1103/physrevb.80.212301

Hussein, M. I., & Frazier, M. J. (2010). Band structure of phononic crystals with general damping. Journal of Applied Physics, 108(9), 093506. doi:10.1063/1.3498806

Moiseyenko, R. P., & Laude, V. (2011). Material loss influence on the complex band structure and group velocity in phononic crystals. Physical Review B, 83(6). doi:10.1103/physrevb.83.064301

Romero-García, V., Sánchez-Pérez, J. V., & Garcia-Raffi, L. M. (2010). Propagating and evanescent properties of double-point defects in sonic crystals. New Journal of Physics, 12(8), 083024. doi:10.1088/1367-2630/12/8/083024

Tournat, V., Pagneux, V., Lafarge, D., & Jaouen, L. (2004). Multiple scattering of acoustic waves and porous absorbing media. Physical Review E, 70(2). doi:10.1103/physreve.70.026609

Chen, Y.-Y., & Ye, Z. (2001). Theoretical analysis of acoustic stop bands in two-dimensional periodic scattering arrays. Physical Review E, 64(3). doi:10.1103/physreve.64.036616

Ihlenburg, F. (Ed.). (1998). Finite Element Analysis of Acoustic Scattering. Applied Mathematical Sciences. doi:10.1007/b98828

Berenger, J.-P. (1994). A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics, 114(2), 185-200. doi:10.1006/jcph.1994.1159

HARARI, I., SLAVUTIN, M., & TURKEL, E. (2000). ANALYTICAL AND NUMERICAL STUDIES OF A FINITE ELEMENT PML FOR THE HELMHOLTZ EQUATION. Journal of Computational Acoustics, 08(01), 121-137. doi:10.1142/s0218396x0000008x

Qi, Q., & Geers, T. L. (1998). Evaluation of the Perfectly Matched Layer for Computational Acoustics. Journal of Computational Physics, 139(1), 166-183. doi:10.1006/jcph.1997.5868

Basu, U., & Chopra, A. K. (2003). Perfectly matched layers for time-harmonic elastodynamics of unbounded domains: theory and finite-element implementation. Computer Methods in Applied Mechanics and Engineering, 192(11-12), 1337-1375. doi:10.1016/s0045-7825(02)00642-4

Zeng, Y. Q., He, J. Q., & Liu, Q. H. (2001). The application of the perfectly matched layer in numerical modeling of wave propagation in poroelastic media. GEOPHYSICS, 66(4), 1258-1266. doi:10.1190/1.1487073

Lions, J.-L., Métral, J., & Vacus, O. (2002). Well-posed absorbing layer for hyperbolic problems. Numerische Mathematik, 92(3), 535-562. doi:10.1007/s002110100263

Liu, Q. H. (1999). Perfectly matched layers for elastic waves in cylindrical and spherical coordinates. The Journal of the Acoustical Society of America, 105(4), 2075-2084. doi:10.1121/1.426812

Lassas, M., & Somersalo, E. (1998). On the existence and convergence of the solution of PML equations. Computing, 60(3), 229-241. doi:10.1007/bf02684334

Hohage, T., Schmidt, F., & Zschiedrich, L. (2003). Solving Time-Harmonic Scattering Problems Based on the Pole Condition II: Convergence of the PML Method. SIAM Journal on Mathematical Analysis, 35(3), 547-560. doi:10.1137/s0036141002406485

Mechel, F. P. (Ed.). (2008). Formulas of Acoustics. doi:10.1007/978-3-540-76833-3

Martínez-Sala, R., Rubio, C., García-Raffi, L. M., Sánchez-Pérez, J. V., Sánchez-Pérez, E. A., & Llinares, J. (2006). Control of noise by trees arranged like sonic crystals. Journal of Sound and Vibration, 291(1-2), 100-106. doi:10.1016/j.jsv.2005.05.030

Romero-García, V., Sánchez-Pérez, J. V., Castiñeira-Ibáñez, S., & Garcia-Raffi, L. M. (2010). Evidences of evanescent Bloch waves in phononic crystals. Applied Physics Letters, 96(12), 124102. doi:10.1063/1.3367739

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem