BRÉCHET, T., & LAMBRECHT, S. (2009). Family Altruism with Renewable Resource and Population Growth. Mathematical Population Studies, 16(1), 60-78. doi:10.1080/08898480802619645
CASELLES, A. (1992). STRUCTURE AND BEHAVIOR IN GENERAL SYSTEMS THEORY. Cybernetics and Systems, 23(6), 549-560. doi:10.1080/01969729208927481
CASELLES, A. (1993). SYSTEMS DECOMPOSITION AND COUPLING. Cybernetics and Systems, 24(4), 305-323. doi:10.1080/01969729308961712
[+]
BRÉCHET, T., & LAMBRECHT, S. (2009). Family Altruism with Renewable Resource and Population Growth. Mathematical Population Studies, 16(1), 60-78. doi:10.1080/08898480802619645
CASELLES, A. (1992). STRUCTURE AND BEHAVIOR IN GENERAL SYSTEMS THEORY. Cybernetics and Systems, 23(6), 549-560. doi:10.1080/01969729208927481
CASELLES, A. (1993). SYSTEMS DECOMPOSITION AND COUPLING. Cybernetics and Systems, 24(4), 305-323. doi:10.1080/01969729308961712
CASELLES, A. (1994). IMPROVEMENTS IN THE SYSTEMS-BASED MODELS GENERATOR SIGEM. Cybernetics and Systems, 25(1), 81-103. doi:10.1080/01969729408902317
CROIX, D. D. L., & SOMMACAL, A. (2009). A Theory of Medical Effectiveness, Differential Mortality, Income Inequality and Growth for Pre-Industrial England. Mathematical Population Studies, 16(1), 2-35. doi:10.1080/08898480802619538
Djidjeli, K., Price, W. G., Temarel, P., & Twizell, E. H. (1998). Partially implicit schemes for the numerical solutions of some non-linear differential equations. Applied Mathematics and Computation, 96(2-3), 177-207. doi:10.1016/s0096-3003(97)10133-3
DUBEY, B. (2010). A MODEL FOR THE EFFECT OF POLLUTANT ON HUMAN POPULATION DEPENDENT ON A RESOURCE WITH ENVIRONMENTAL AND HEALTH POLICY. Journal of Biological Systems, 18(03), 571-592. doi:10.1142/s0218339010003378
HRITONENKO, N., & YATSENKO, Y. (2008). Can Technological Change Sustain Retirement in an Aging Population? Mathematical Population Studies, 15(2), 96-113. doi:10.1080/08898480802010167
Letellier, C., Elaydi, S., Aguirre, L. A., & Alaoui, A. (2004). Difference equations versus differential equations, a possible equivalence for the Rössler system? Physica D: Nonlinear Phenomena, 195(1-2), 29-49. doi:10.1016/j.physd.2004.02.007
MICÓ, J. C., CASELLES, A., SOLER, D., SANZ, T., & MARTÍNEZ, E. (2008). A Side-by-Side Single Sex Age-Structured Human Population Dynamic Model: Exact Solution and Model Validation. The Journal of Mathematical Sociology, 32(4), 285-321. doi:10.1080/00222500802352758
Sanz , M. T. J. C. Micó , A. Caselles , and D. Soler . “Demography and Well-being.” Paper presented at the 8th Congress of the European Union of Systemics. Bruxeles, Belgium . 2011 .
Sanz , M. T. J. C. Micó , A. Caselles , and D. Soler . “Welfare and Human Population in Austria.” EMCSR 2012, 354–356. Vienna, Austria, 2012a. ISSN 2227-7803.
Sanz , M. T. J. C. Micó , A. Caselles , and D. Soler . “Well-being and Demographic Dynamics.” Paper presented at the 21st International Congress on Complex Systems, Agadir, Morocco , 2012b . Congressional Record, ISBN: 978-1-4673-4765-5.
SANZ, M. T., MICÓ, J. C., CASELLES, A., & SOLER, D. (2014). A Stochastic Model for Population and Well-Being Dynamics. The Journal of Mathematical Sociology, 38(2), 75-94. doi:10.1080/0022250x.2011.629064
United Nations Development Programme (UNDP). Objetivosde Desarrollo del Milenio Informe 2010(MDG Report 2010) . New York : Naciones Unidas (UN) , 2010 .
Viličić, N., Ivković, V., Janović, T., & Jovanović, V. (2007). CYBERNETIC MODEL (LOPI) SIMULATION OF DEMOGRAPHIC DYNAMICS OF CROATIAN POPULATION. Cybernetics and Systems, 38(4), 323-347. doi:10.1080/01969720701291155
[-]