- -

The role of solvent evaporation in the microstructure of electroactive beta-poly(vinylidene fluoride) membranes obtained by isothermal crystallization

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The role of solvent evaporation in the microstructure of electroactive beta-poly(vinylidene fluoride) membranes obtained by isothermal crystallization

Mostrar el registro completo del ítem

Magalhaes, R.; Duraes, N.; Silva, M.; Silva, J.; Sencadas, V.; Botelho, G.; Gómez Ribelles, JL.... (2011). The role of solvent evaporation in the microstructure of electroactive beta-poly(vinylidene fluoride) membranes obtained by isothermal crystallization. Soft Materials. 9(1):1-14. https://doi.org/10.1080/1539445X.2010.525442

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/57867

Ficheros en el ítem

Metadatos del ítem

Título: The role of solvent evaporation in the microstructure of electroactive beta-poly(vinylidene fluoride) membranes obtained by isothermal crystallization
Autor: Magalhaes, R. Duraes, N. Silva, M. Silva, J. Sencadas, V. Botelho, G. Gómez Ribelles, José Luís Lanceros Mendez, Senen
Entidad UPV: Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Fecha difusión:
Resumen:
Electroactive beta-poly(vinylidene fluoride) (PVDF) membranes were obtained by isothermal crystallization from the solution. Different morphologies and microstructures were obtained by crystallizing at different temperatures. ...[+]
Palabras clave: Electroactive membranes , PVDF , Phase diagram , Solvent evaporation
Derechos de uso: Reserva de todos los derechos
Fuente:
Soft Materials. (issn: 1539-445X )
DOI: 10.1080/1539445X.2010.525442
Editorial:
Taylor & Francis
Versión del editor: http://dx.doi.org/10.1080/1539445X.2010.525442
Código del Proyecto:
info:eu-repo/grantAgreement/UPV//PAID-00-09/
...[+]
info:eu-repo/grantAgreement/UPV//PAID-00-09/
info:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBPD%2F63148%2F2009/PT/ELECTROACTIVE MATERIALS BASED POROUS MEMBRANES AND SCAFFOLDS FOR BIOMEDICAL APPLICATIONS/
info:eu-repo/grantAgreement/MEC//MAT2007-66759-C03-01/ES/NUEVOS SUBSTRATOS POLIMERICOS BIORREABSORBIBLES PARA LA REGENERACION DEL CARTILAGO ARTICULAR/
info:eu-repo/grantAgreement/FCT/5876-PPCDTI/109368/PT/“Smart joint implants using bionanocomposites-(SIMBIO)”/
info:eu-repo/grantAgreement/FCT/5876-PPCDTI/69316/PT/Multiferroic, magnetoelectric and metallic micro and nanocomposites based on electroactive polymers for advanced applications/
info:eu-repo/grantAgreement/FCT/5876-PPCDTI/73030/PT/Polarization-driven self-assembly of organic and biomaterials using ferroelectric polymers/
[-]
Agradecimientos:
The authors thank the Portuguese Foundation for Science and Technology (FCT) Grants PTDC/CTM/73030/2006, PTDC/CTM/69316/2006, and NANO/NMed-SD/0156/2007. V. Sencadas thanks the FCT for the SFRH/BPD/63148/2009 grant. JLGR ...[+]
Tipo: Artículo

References

Nalwa, H. S. (1995). Ferroelectric Polymers. doi:10.1201/9781482295450

Sencadas, V., Gregorio, R., & Lanceros-Méndez, S. (2009). α to β Phase Transformation and Microestructural Changes of PVDF Films Induced by Uniaxial Stretch. Journal of Macromolecular Science, Part B, 48(3), 514-525. doi:10.1080/00222340902837527

Gregorio, Jr., R., & Cestari, M. (1994). Effect of crystallization temperature on the crystalline phase content and morphology of poly(vinylidene fluoride). Journal of Polymer Science Part B: Polymer Physics, 32(5), 859-870. doi:10.1002/polb.1994.090320509 [+]
Nalwa, H. S. (1995). Ferroelectric Polymers. doi:10.1201/9781482295450

Sencadas, V., Gregorio, R., & Lanceros-Méndez, S. (2009). α to β Phase Transformation and Microestructural Changes of PVDF Films Induced by Uniaxial Stretch. Journal of Macromolecular Science, Part B, 48(3), 514-525. doi:10.1080/00222340902837527

Gregorio, Jr., R., & Cestari, M. (1994). Effect of crystallization temperature on the crystalline phase content and morphology of poly(vinylidene fluoride). Journal of Polymer Science Part B: Polymer Physics, 32(5), 859-870. doi:10.1002/polb.1994.090320509

Gregorio, R. (2006). Determination of the α, β, and γ crystalline phases of poly(vinylidene fluoride) films prepared at different conditions. Journal of Applied Polymer Science, 100(4), 3272-3279. doi:10.1002/app.23137

Sencadas, V., Gregorio Filho, R., & Lanceros-Mendez, S. (2006). Processing and characterization of a novel nonporous poly(vinilidene fluoride) films in the β phase. Journal of Non-Crystalline Solids, 352(21-22), 2226-2229. doi:10.1016/j.jnoncrysol.2006.02.052

Matsuyama, H., Teramoto, M., Nakatani, R., & Maki, T. (1999). Membrane formation via phase separation induced by penetration of nonsolvent from vapor phase. I. Phase diagram and mass transfer process. Journal of Applied Polymer Science, 74(1), 159-170. doi:10.1002/(sici)1097-4628(19991003)74:1<159::aid-app20>3.0.co;2-s

Matsuyama, H., Teramoto, M., Nakatani, R., & Maki, T. (1999). Membrane formation via phase separation induced by penetration of nonsolvent from vapor phase. II. Membrane morphology. Journal of Applied Polymer Science, 74(1), 171-178. doi:10.1002/(sici)1097-4628(19991003)74:1<171::aid-app21>3.0.co;2-r

Matsuyama, H., Teramoto, M., Kudari, S., & Kitamura, Y. (2001). Effect of diluents on membrane formation via thermally induced phase separation. Journal of Applied Polymer Science, 82(1), 169-177. doi:10.1002/app.1836

Su, Y., Chen, C., Li, Y., & Li, J. (2007). PVDF Membrane Formation via Thermally Induced Phase Separation. Journal of Macromolecular Science, Part A, 44(1), 99-104. doi:10.1080/10601320601044575

Han, X., Ding, H., Wang, L., & Xiao, C. (2007). Effects of nucleating agents on the porous structure of polyphenylene sulfide via thermally induced phase separation. Journal of Applied Polymer Science, 107(4), 2475-2479. doi:10.1002/app.27255

Magistris, A. (2002). PVDF-based porous polymer electrolytes for lithium batteries. Solid State Ionics, 152-153, 347-354. doi:10.1016/s0167-2738(02)00335-1

Quartarone, E., Mustarelli, P., & Magistris, A. (2002). Transport Properties of Porous PVDF Membranes. The Journal of Physical Chemistry B, 106(42), 10828-10833. doi:10.1021/jp0139843

Ji, G.-L., Zhu, B.-K., Cui, Z.-Y., Zhang, C.-F., & Xu, Y.-Y. (2007). PVDF porous matrix with controlled microstructure prepared by TIPS process as polymer electrolyte for lithium ion battery. Polymer, 48(21), 6415-6425. doi:10.1016/j.polymer.2007.08.049

Ding, Y., Zhang, P., Long, Z., Jiang, Y., Xu, F., & Di, W. (2008). Preparation of PVdF-based electrospun membranes and their application as separators. Science and Technology of Advanced Materials, 9(1), 015005. doi:10.1088/1468-6996/9/1/015005

Yeow, M. L., Liu, Y. T., & Li, K. (2004). Morphological study of poly(vinylidene fluoride) asymmetric membranes: Effects of the solvent, additive, and dope temperature. Journal of Applied Polymer Science, 92(3), 1782-1789. doi:10.1002/app.20141

Smirnova, N. N., Tsvetkova, L. Y., Bykova, T. A., & Marcus, Y. (2007). Thermodynamic properties of N,N-dimethylformamide and N,N-dimethylacetamide. The Journal of Chemical Thermodynamics, 39(11), 1508-1513. doi:10.1016/j.jct.2007.02.009

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem