- -

The role of solvent evaporation in the microstructure of electroactive beta-poly(vinylidene fluoride) membranes obtained by isothermal crystallization

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The role of solvent evaporation in the microstructure of electroactive beta-poly(vinylidene fluoride) membranes obtained by isothermal crystallization

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Magalhaes, R. es_ES
dc.contributor.author Duraes, N. es_ES
dc.contributor.author Silva, M. es_ES
dc.contributor.author Silva, J. es_ES
dc.contributor.author Sencadas, V. es_ES
dc.contributor.author Botelho, G. es_ES
dc.contributor.author Gómez Ribelles, José Luís es_ES
dc.contributor.author Lanceros Mendez, Senen es_ES
dc.date.accessioned 2015-11-23T08:17:57Z
dc.date.available 2015-11-23T08:17:57Z
dc.date.issued 2011
dc.identifier.issn 1539-445X
dc.identifier.uri http://hdl.handle.net/10251/57867
dc.description.abstract Electroactive beta-poly(vinylidene fluoride) (PVDF) membranes were obtained by isothermal crystallization from the solution. Different morphologies and microstructures were obtained by crystallizing at different temperatures. The mechanism and kinetics of solvent evaporation from the polymeric solution were investigated using isothermal thermogravimetric analysis. The kinetic parameters and the activation energy were also calculated. The solvent evaporation is ruled by two steps, related with a metastable-unstable-metastable transition in the solution phase diagram. Scanning electron microscopy revealed the porous structure and the variations of the morphology with the variation of the isothermal evaporation temperature. Finally, the infrared spectroscopy measurements confirm that the polymer crystallizes in the electroactive beta-phase of PVDF. es_ES
dc.description.sponsorship The authors thank the Portuguese Foundation for Science and Technology (FCT) Grants PTDC/CTM/73030/2006, PTDC/CTM/69316/2006, and NANO/NMed-SD/0156/2007. V. Sencadas thanks the FCT for the SFRH/BPD/63148/2009 grant. JLGR acknowledges the funding from the Programa de Apoyo a la Investigacion y Desarrollo (PAID-00-09) of the Universidad Politecnica de Valencia for a short stay in Universidade do Minho, Braga, the support of the Spanish Ministry of Science through project No. MAT2007-66759-C03-01 (including the FEDER financial support), and funding for research in the field of Regenerative Medicine through the collaboration agreement from the Conselleria de Sanidad (Generalitat Valenciana), and the Instituto de Salud Carlos III (Ministry of Science and Innovation). The authors also thank Solvay for providing the excellent quality material. en_EN
dc.language Inglés es_ES
dc.publisher Taylor & Francis es_ES
dc.relation.ispartof Soft Materials es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Electroactive membranes es_ES
dc.subject PVDF es_ES
dc.subject Phase diagram es_ES
dc.subject Solvent evaporation es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title The role of solvent evaporation in the microstructure of electroactive beta-poly(vinylidene fluoride) membranes obtained by isothermal crystallization es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/1539445X.2010.525442
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-00-09/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBPD%2F63148%2F2009/PT/ELECTROACTIVE MATERIALS BASED POROUS MEMBRANES AND SCAFFOLDS FOR BIOMEDICAL APPLICATIONS/
dc.relation.projectID info:eu-repo/grantAgreement/MEC//MAT2007-66759-C03-01/ES/NUEVOS SUBSTRATOS POLIMERICOS BIORREABSORBIBLES PARA LA REGENERACION DEL CARTILAGO ARTICULAR/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT/5876-PPCDTI/109368/PT/“Smart joint implants using bionanocomposites-(SIMBIO)”/
dc.relation.projectID info:eu-repo/grantAgreement/FCT/5876-PPCDTI/69316/PT/Multiferroic, magnetoelectric and metallic micro and nanocomposites based on electroactive polymers for advanced applications/
dc.relation.projectID info:eu-repo/grantAgreement/FCT/5876-PPCDTI/73030/PT/Polarization-driven self-assembly of organic and biomaterials using ferroelectric polymers/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.description.bibliographicCitation Magalhaes, R.; Duraes, N.; Silva, M.; Silva, J.; Sencadas, V.; Botelho, G.; Gómez Ribelles, JL.... (2011). The role of solvent evaporation in the microstructure of electroactive beta-poly(vinylidene fluoride) membranes obtained by isothermal crystallization. Soft Materials. 9(1):1-14. https://doi.org/10.1080/1539445X.2010.525442 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1080/1539445X.2010.525442 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 14 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 1 es_ES
dc.relation.senia 212285 es_ES
dc.contributor.funder Ministerio de Educación y Ciencia es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Fundação para a Ciência e a Tecnologia, Portugal
dc.description.references Nalwa, H. S. (1995). Ferroelectric Polymers. doi:10.1201/9781482295450 es_ES
dc.description.references Sencadas, V., Gregorio, R., & Lanceros-Méndez, S. (2009). α to β Phase Transformation and Microestructural Changes of PVDF Films Induced by Uniaxial Stretch. Journal of Macromolecular Science, Part B, 48(3), 514-525. doi:10.1080/00222340902837527 es_ES
dc.description.references Gregorio, Jr., R., & Cestari, M. (1994). Effect of crystallization temperature on the crystalline phase content and morphology of poly(vinylidene fluoride). Journal of Polymer Science Part B: Polymer Physics, 32(5), 859-870. doi:10.1002/polb.1994.090320509 es_ES
dc.description.references Gregorio, R. (2006). Determination of the α, β, and γ crystalline phases of poly(vinylidene fluoride) films prepared at different conditions. Journal of Applied Polymer Science, 100(4), 3272-3279. doi:10.1002/app.23137 es_ES
dc.description.references Sencadas, V., Gregorio Filho, R., & Lanceros-Mendez, S. (2006). Processing and characterization of a novel nonporous poly(vinilidene fluoride) films in the β phase. Journal of Non-Crystalline Solids, 352(21-22), 2226-2229. doi:10.1016/j.jnoncrysol.2006.02.052 es_ES
dc.description.references Matsuyama, H., Teramoto, M., Nakatani, R., & Maki, T. (1999). Membrane formation via phase separation induced by penetration of nonsolvent from vapor phase. I. Phase diagram and mass transfer process. Journal of Applied Polymer Science, 74(1), 159-170. doi:10.1002/(sici)1097-4628(19991003)74:1<159::aid-app20>3.0.co;2-s es_ES
dc.description.references Matsuyama, H., Teramoto, M., Nakatani, R., & Maki, T. (1999). Membrane formation via phase separation induced by penetration of nonsolvent from vapor phase. II. Membrane morphology. Journal of Applied Polymer Science, 74(1), 171-178. doi:10.1002/(sici)1097-4628(19991003)74:1<171::aid-app21>3.0.co;2-r es_ES
dc.description.references Matsuyama, H., Teramoto, M., Kudari, S., & Kitamura, Y. (2001). Effect of diluents on membrane formation via thermally induced phase separation. Journal of Applied Polymer Science, 82(1), 169-177. doi:10.1002/app.1836 es_ES
dc.description.references Su, Y., Chen, C., Li, Y., & Li, J. (2007). PVDF Membrane Formation via Thermally Induced Phase Separation. Journal of Macromolecular Science, Part A, 44(1), 99-104. doi:10.1080/10601320601044575 es_ES
dc.description.references Han, X., Ding, H., Wang, L., & Xiao, C. (2007). Effects of nucleating agents on the porous structure of polyphenylene sulfide via thermally induced phase separation. Journal of Applied Polymer Science, 107(4), 2475-2479. doi:10.1002/app.27255 es_ES
dc.description.references Magistris, A. (2002). PVDF-based porous polymer electrolytes for lithium batteries. Solid State Ionics, 152-153, 347-354. doi:10.1016/s0167-2738(02)00335-1 es_ES
dc.description.references Quartarone, E., Mustarelli, P., & Magistris, A. (2002). Transport Properties of Porous PVDF Membranes. The Journal of Physical Chemistry B, 106(42), 10828-10833. doi:10.1021/jp0139843 es_ES
dc.description.references Ji, G.-L., Zhu, B.-K., Cui, Z.-Y., Zhang, C.-F., & Xu, Y.-Y. (2007). PVDF porous matrix with controlled microstructure prepared by TIPS process as polymer electrolyte for lithium ion battery. Polymer, 48(21), 6415-6425. doi:10.1016/j.polymer.2007.08.049 es_ES
dc.description.references Ding, Y., Zhang, P., Long, Z., Jiang, Y., Xu, F., & Di, W. (2008). Preparation of PVdF-based electrospun membranes and their application as separators. Science and Technology of Advanced Materials, 9(1), 015005. doi:10.1088/1468-6996/9/1/015005 es_ES
dc.description.references Yeow, M. L., Liu, Y. T., & Li, K. (2004). Morphological study of poly(vinylidene fluoride) asymmetric membranes: Effects of the solvent, additive, and dope temperature. Journal of Applied Polymer Science, 92(3), 1782-1789. doi:10.1002/app.20141 es_ES
dc.description.references Smirnova, N. N., Tsvetkova, L. Y., Bykova, T. A., & Marcus, Y. (2007). Thermodynamic properties of N,N-dimethylformamide and N,N-dimethylacetamide. The Journal of Chemical Thermodynamics, 39(11), 1508-1513. doi:10.1016/j.jct.2007.02.009 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem