- -

Effect of thermal treatment and storage conditions on physical and sensory properties of grapefruit juice

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Effect of thermal treatment and storage conditions on physical and sensory properties of grapefruit juice

Show simple item record

Files in this item

dc.contributor.author Igual Ramo, Marta es_ES
dc.contributor.author Contreras Monzón, Carolina Ivonne es_ES
dc.contributor.author Camacho Vidal, Mª Mar es_ES
dc.contributor.author Martínez Navarrete, Nuria es_ES
dc.date.accessioned 2015-11-24T08:25:29Z
dc.date.available 2015-11-24T08:25:29Z
dc.date.issued 2014-01
dc.identifier.issn 1935-5130
dc.identifier.uri http://hdl.handle.net/10251/57966
dc.description.abstract Physical parameters, such as particle size distribution, flow behavior, density, turbidity, and color, were measured and sensory evaluation was carried out to compare the properties of freshly squeezed grapefruit juice with those of juice that has been pasteurized by microwave or by following a conventional heating method. Samples were either frozen-stored or refrigerated. In general, the physical parameters of grapefruit juice were significantly affected by heat treatment, especially in the case of the conventional process. However, from a sensory point of view, pasteurized samples were similar to fresh ones. When frozen, turbidity, particle size distribution, density, flow behavior, and color were stable throughout the studied period, regardless of the pasteurization treatment. During refrigerated storage, the turbidity, particle size distribution, and consistency index decrease. This occurs in a more pronounced way in the case of juice which has not been submitted to a heating treatment, probably due to residual pectin methyl esterase activity. Furthermore, the association between the carboxyl groups of pectin chains and Ca2+ could be responsible for both the subsequent increase in the turbidity of the juice and also the decrease in its density. Throughout the period under study, the smallest color change was experienced by microwave-pasteurized juice. For these reasons, and also due to the reduction in the process time, microwave treatment can be recommended as a method for the pasteurization of grapefruit juice. es_ES
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Food and Bioprocess Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Grapefruit es_ES
dc.subject Juice es_ES
dc.subject Pasteurization es_ES
dc.subject Microwave es_ES
dc.subject Turbidity es_ES
dc.subject Rheology es_ES
dc.subject Color es_ES
dc.subject Sensory evaluation es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title Effect of thermal treatment and storage conditions on physical and sensory properties of grapefruit juice es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11947-013-1088-6
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.description.bibliographicCitation Igual Ramo, M.; Contreras Monzón, CI.; Camacho Vidal, MM.; Martínez Navarrete, N. (2014). Effect of thermal treatment and storage conditions on physical and sensory properties of grapefruit juice. Food and Bioprocess Technology. 7(1):191-203. doi:10.1007/s11947-013-1088-6 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s11947-013-1088-6 es_ES
dc.description.upvformatpinicio 191 es_ES
dc.description.upvformatpfin 203 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 7 es_ES
dc.description.issue 1 es_ES
dc.relation.senia 258572 es_ES
dc.description.references AENOR. (2008). Sensory analysis: vocabulary. UNE-EN-ISO 5492. Madrid, Spain: AENOR. es_ES
dc.description.references AENOR. (2009a). Particle size analysis—laser diffraction methods. ISO 13320:2009. Madrid, Spain: AENOR. es_ES
dc.description.references AENOR. (2009b). Sensory analysis: methodology. Paired comparison test. UNE-EN-ISO 5495. Madrid, Spain: AENOR. es_ES
dc.description.references Astigarraga-Urquiza, J., & Astigarraga-Aguirre, J. (1995). Hornos de alta frecuencia y microondas: teoría, cálculo y aplicaciones. Madrid, Spain: McGraw-Hill. es_ES
dc.description.references Baker, R. A., & Cameron, R. G. (1999). Clouds of citrus juices and juice drinks. Food Technology, 53, 64–69. es_ES
dc.description.references Barnavon, L., Doco, T., Terrier, N., Agearges, A., Romieu, C., & Pellerin, P. (2001). Involvement of pectin methylesterase during the ripening of grape berries: partial cDNA isolation, transcript expression and changes in the degree of methyl-esterification of cell wall pectins. Phytochemistry, 58, 693–701. es_ES
dc.description.references Bodart, M., Peñaranda, R., Deneyerc, A., & Flamant, G. (2008). Photometry and colorimetry characterization of materials in daylighting evaluation tools. Building and Environment, 43, 2046–2058. es_ES
dc.description.references Cañumir, J. A., Celis, J. E., Brujin, J., & Vidal, L. (2002). Pasteurisation of apple juice using microwaves. Lebensmittel-Wissenschaft und Technologie, 35, 389–392. es_ES
dc.description.references Chandler, B. U., & Robertson, G. L. (1983). Effect of pectic enzymes on cloud stability and soluble limonin concentration in stored orange juice. Journal of the Science of Food and Agriculture, 34, 599–611. es_ES
dc.description.references Clemente, E. (1998). Purification and thermostability of isoperoxidase from orange. Phytochemistry, 49, 26–29. es_ES
dc.description.references Corredig, M., Kerr, W., & Wicker, L. (2001). Particle size distribution of orange juice cloud after addition of sensitized pectin. Journal of Agriculture of Food Chemistry, 49, 2523–2526. es_ES
dc.description.references Elez-Martínez, P., Aguiló-Aguayo, I., & Martín Belloso, O. (2006). Inactivation of orange juice peroxidase by high-intensity pulsed electric fields as influenced by process parameters. Journal of the Science of Food and Agriculture, 86, 71–81. es_ES
dc.description.references Farnworth, E. R., Lagacea, M., Couture, R., Yaylayan, V., & Stewart, B. (2001). Thermal processing, storage conditions and the composition and physical properties of orange juice. Food Research International, 34, 25–30. es_ES
dc.description.references Gross, M. D., & Moser, J. B. (1977). A colorimetric study of coffee and tea staining of composite resins. Journal of Oral Rehabilitation, 4, 311–322. es_ES
dc.description.references Igual, M., García-Martínez, E., Camacho, M. M., & Martínez-Navarrete, N. (2010). Effect of thermal treatment and storage on the stability of organic acids and the functional value of grapefruit juice. Food Chemistry, 118, 291–299. es_ES
dc.description.references Igual, M., García-Martínez, E., Camacho, M. M., & Martínez-Navarrete, N. (2013). Physicochemical and sensorial properties of grapefruit jams as affected by processing of grapefruit juice. Food and Bioprocess Technology, 6, 277–185. es_ES
dc.description.references Johnston, W. M., & Kao, E. C. (1989). Assessment of appearance match by visual observation and clinical colorimetry. Journal of Dental Research, 68, 819–822. es_ES
dc.description.references Joslyn, M. A., & Pilnik, W. (1961). Enzymes and enzyme activity. In W. B. Sinclair (Ed.), The orange: its biochemistry and physiology (pp. 373–435). Berkeley, CA: University of California Press. es_ES
dc.description.references Kimball, D. A. (1999). Procesado de cítricos (2nd ed.). Zaragoza, Spain: Acribia. es_ES
dc.description.references Klavons, J. A., Bennett, R. D., & Vannier, S. H. (1994). Physical/chemical nature of pectin associated with commercial orange juice cloud. Journal of Food Science, 59, 399–401. es_ES
dc.description.references Lee, H. S., & Coates, G. A. (1999). Thermal pasteurization effects on color of red grapefruit juices. Journal of Food Science, 64(4), 663–666. es_ES
dc.description.references Lee, H. S., & Coates, G. A. (2002). Characterization of color fade during frozen storage of red grapefruit juice concentrates. Journal of Agricultural and Food Chemistry, 50, 3988–3991. es_ES
dc.description.references Martín-Diana, A. B., Rico, D., Barat, J. M., & Barry-Ryan, C. (2009). Orange juices enriched with chitosan: optimisation for extending the shelf-life. Innovative Food Science and Emerging Technologies, 10, 590–600. es_ES
dc.description.references Meilgaard, M., Civille, G. V., & Carr, B. T. (1999). Attribute differences test. Pairwise ranking test: Friedman analysis. In M. Meilgaard, G. V. Civille, & B. T. Carr (Eds.), Sensory evaluation techniques (3rd ed., pp. 103–106). London: CRC. es_ES
dc.description.references Nicolau, K., Andrey, J., Vitoriano, P., & Cecilia, C. (2008). Inactivation kinetics of polyphenol oxidase and peroxidase in green coconut water by microwave processing. Journal of Food Engineering, 88, 69–176. es_ES
dc.description.references Nikdel, S., Chen, C., Parish, M., MacKellar, D., & Friedrich, L. (1993). Pasteurization of citrus juice with microwaves energy in a continuous-flow unit. Journal of Agricultural and Food Chemistry, 41, 2116–2119. es_ES
dc.description.references Pankaj, B. P., Umezuruike, L. O., & Fahad, A. A. (2013). Colour measurement and analysis in fresh and processed foods: a review. Food and Bioprocess Technology, 6, 36–60. es_ES
dc.description.references Scardina, P. (2009). Fruit juices: properties, consumption and nutrition. Food and beverage consumption and health series. New York: Nova Science Publishers. es_ES
dc.description.references Shim, S. M., & Kim, G. H. (2002). Color changes and carotenoid pigment loss in retentate from star ruby grapefruit juice under refrigerated conditions. Food Science and Technology Research, 8(3), 244–246. es_ES
dc.description.references Steffe, J. F. (1996). Rheological methods in food process engineering (2nd ed.). East Lansing, MI: Freeman Press. es_ES
dc.description.references Tang, J. (2005). Dielectric properties of foods. In H. Schubert & M. Regier (Eds.), The microwave processing of foods (pp. 22–38). Cambridge: Woodhead Publishing. es_ES
dc.description.references Taylor, B. (2005). Fruit and juice processing. In P. R. Ashurst (Ed.), Chemistry and technology of soft drinks and fruit juices (2nd ed., pp. 35–67). Oxford, UK: Blackwell. es_ES
dc.description.references Varnam, A. H., & Sutherland, J. P. (1999). Fruit juices. In A. H. Varnam & J. P. Sutherland (Eds.), Beverage: technology, chemistry and microbiology: vol. 2. Food products series (pp. 26–72). New York: Aspen Publications. es_ES
dc.description.references Venkatesh, M. S., & Raghavan, G. S. V. (2004). An overview of microwave processing and dielectric properties of agri-food materials. Biosystems Engineering, 88, 1–18. es_ES
dc.description.references Vikram, V. B., Ramesh, M. N., & Prapulla, S. G. (2005). Thermal degradation kinetics of nutrients in orange juice heated by electromagnetic and conventional methods. Journal of Food Engineering, 69, 31–40. es_ES
dc.description.references Zvaigzne, G., & Karklina, D. (2009). Antioxidants in various citrus fruit juices. Chemine Technologija, 3(52), 56–61. es_ES


This item appears in the following Collection(s)

Show simple item record