- -

Synthesis and properties of caprolactone and ethylene glycol copolymers for neural regeneration

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Synthesis and properties of caprolactone and ethylene glycol copolymers for neural regeneration

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Escobar Ivirico, Jorge Luis es_ES
dc.contributor.author García Cruz, Dunia Mercedes es_ES
dc.contributor.author Araque Monrós, María Carmen es_ES
dc.contributor.author Martínez Ramos, Cristina es_ES
dc.contributor.author Monleón Pradas, Manuel es_ES
dc.date.accessioned 2015-11-24T08:29:42Z
dc.date.available 2015-11-24T08:29:42Z
dc.date.issued 2012-07
dc.identifier.issn 0957-4530
dc.identifier.uri http://hdl.handle.net/10251/57972
dc.description.abstract Copolymer networks from poly(ethylene glycol) methacrylate (PEGMA) and caprolactone 2-(methacryloyloxy) ethyl ester were synthesized and the resulting structure of the copolymer network was characterized by differential scanning calorimetry, thermogravimetry, Fourier transform infrared spectroscopy, equilibrium water gain and dynamic mechanical analysis, results which were employed to conclude about the network structure of the resulting copolymers. The new material is a random copolymer with a good miscibility and increasing hydrophilicity as the PEGMA content increases in the composition. Physical data suggest an excess free volume and synergistic interactions between the lateral chains of both comonomers. Olfactory ensheathing cells were cultured on the different networks, and cell viability and proliferation were assessed by MTS assay. The copolymers with a 30 wt% of PEGMA showed the best results compared with the other compositions in this respect, indicating the relevance for biological performance of a balance of hydrophilic and hydrophobic functionalities in the polymer chain. © Springer Science+Business Media, LLC 2012. es_ES
dc.description.sponsorship The authors acknowledge the support of the Spanish Science & Innovation Ministry through project MAT2008-06434 and the funding by the Centro de Investigacion Principe Felipe through the collaboration agreement from the Conselleria de Sanidad (Generalitat Valenciana) and the Instituto de Salud Carlos III (Ministry of Science and Innovation). JLEI acknowledges the support of Spanish Science & Innovation Ministry through the "Campus de Excelencia Internacional'' program consistent with Polytechnic University of Valencia. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Journal of Materials Science: Materials in Medicine es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Biological performance es_ES
dc.subject Caprolactone es_ES
dc.subject Cell viability es_ES
dc.subject Comonomers es_ES
dc.subject Copolymer networks es_ES
dc.subject Ethyl esters es_ES
dc.subject Hydrophilic and hydrophobic es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Synthesis and properties of caprolactone and ethylene glycol copolymers for neural regeneration es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10856-012-4649-8
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2008-06434/ES/MATERIALES PARA REGENERACION NEURAL Y ANGIOGENESIS EN EL SISTEMA NERVIOSO CENTRAL/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.description.bibliographicCitation Escobar Ivirico, JL.; García Cruz, DM.; Araque Monrós, MC.; Martínez Ramos, C.; Monleón Pradas, M. (2012). Synthesis and properties of caprolactone and ethylene glycol copolymers for neural regeneration. Journal of Materials Science: Materials in Medicine. 23(7):1605-1617. https://doi.org/10.1007/s10856-012-4649-8 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s10856-012-4649-8 es_ES
dc.description.upvformatpinicio 1605 es_ES
dc.description.upvformatpfin 1617 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 23 es_ES
dc.description.issue 7 es_ES
dc.relation.senia 235619 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Centro de Investigación Príncipe Felipe es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Instituto de Salud Carlos III es_ES
dc.description.references Sachlos E, Czernuszka JT. Making tissue engineering scaffolds work. Review on the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur Cells Mater. 2003;5:29–40. es_ES
dc.description.references Liu C, Xia Z, Czernuszka JT. Design and development of three-dimensional scaffolds for tissue engineering. Chem Eng Res Des. 2007;85:1051–64. es_ES
dc.description.references Martín-López E, Nieto-Díaz M, Nieto-Sampedro M. Differential adhesiveness and neurite-promoting activity for neural cells of chitosan, gelatin, and poly-l-lysine films. J Biomater Appl. 2010;26(7):791–809. es_ES
dc.description.references Sakai Y, Matsuyama Y, Takahashi K, Sato T, Hattori T, Nakashima S, et al. New artificial nerve conduits made with photocrosslinked hyaluronic acid for peripheral nerve regeneration. Bio-Med Mater Eng. 2007;17(3):191–7. es_ES
dc.description.references Ciardelli G, Chiono V. Materials for peripheral nerve regeneration. Macromol Biosci. 2006;6(1):13–26. es_ES
dc.description.references Gingras M, Paradis I, Berthod F. Nerve regeneration in a collagen-chitosan tissue-engineered skin transplanted on nude mice. Biomaterials. 2003;24(9):1653–61. es_ES
dc.description.references Ishikawa N, Suzuki Y, Dezawa M, Kataoka K, Ohta M, Cho H, et al. Peripheral nerve regeneration by transplantation of BMSC-derived Schwann cells as chitosan gel sponge scaffolds. J Biomed Mater Res A. 2009;89A(4):1118–24. es_ES
dc.description.references Sabater i Serra R, Kyritsis A, Escobar Ivirico JL, Gómez Ribelles JL, Pissis P, Salmerón-Sánchez M. Molecular mobility in biodegradable poly(e-caprolactone)/poly(hydroxyethyl acrylate) networks. Eur Phys J E. 2011;34(4):37. es_ES
dc.description.references Ivirico JLE, Martinez EC, Sanchez MS, Criado IM, Ribelles JLG, Pradas MM. Structure and properties of methacrylate-endcapped caprolactone networks with modulated water uptake for biomedical applications. J Biomed Mater Res B. 2007;83B(1):266–75. es_ES
dc.description.references Escobar Ivirico JL, Salmerón-Sánchez M, Gómez Ribelles JL, Monleón Pradas M. Poly(l-lactide) networks with tailored water sorption. Colloid Polym Sci. 2009;287(6):671–81. es_ES
dc.description.references Escobar Ivirico JL, Salmerón Sánchez M, Sabater i Serra R, Meseguer Dueñas JM, Gómez Ribelles JL, Monleón Pradas M. Structure and properties of poly(ε-caprolactone) networks with modulated water uptake. Macromol Chem Phys. 2006;207(23):2195–205. es_ES
dc.description.references Ivirico JLE, Salmerón-Sánchez M, Gómez Ribelles JL, Pradas MM. Biodegradable poly(l-lactide) and polycaprolactone block copolymer networks. Polym Int. 2011;60(2):264–70. es_ES
dc.description.references Meseguer-Dueñas J, Más-Estellés J, Castilla-Cortázar I, Escobar Ivirico J, Vidaurre A. Alkaline degradation study of linear and network poly(e-caprolactone). J Mater Sci-Mater Med. 2010;22(1):11–8. es_ES
dc.description.references Hadlock T, Elisseeff J, Langer R, Vacanti J, Cheney M. A tissue-engineered conduit for peripheral nerve repair. Arch Otolaryngol Head Neck Surg. 1998;124(10):1081–6. es_ES
dc.description.references Teng YD, Lavik EB, Qu X, Park KI, Ourednik J, Zurakowski D, et al. Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proc Natl Acad Sci USA. 2002;99(5):3024–9. es_ES
dc.description.references Evans GRD, Brandt K, Widmer MS, Lu L, Meszlenyi RK, Gupta PK, et al. In vivo evaluation of poly(l-lactic acid) porous conduits for peripheral nerve regeneration. Biomaterials. 1999;20(12):1109–15. es_ES
dc.description.references Widmer MS, Gupta PK, Lu L, Meszlenyi RK, Evans GRD, Brandt K, et al. Manufacture of porous biodegradable polymer conduits by an extrusion process for guided tissue regeneration. Biomaterials. 1998;19(21):1945–55. es_ES
dc.description.references Sundback CA, Shyu JY, Wang Y, Faquin WC, Langer RS, Vacanti JP, et al. Biocompatibility analysis of poly(glycerol sebacate) as a nerve guide material. Biomaterials. 2005;26:5454–64. es_ES
dc.description.references Evans GRD, Brandt K, Niederbichler AD, Chauvin P, Hermann S, Bogle M, et al. Clinical long-term in vivo evaluation of poly(l-lactic acid) porous conduits for peripheral nerve regeneration. J Biomater Sci Polym Ed. 2000;11:869–78. es_ES
dc.description.references Bryan DJ, Tang JB, Doherty SA, Hile DD, Trantolo DJ, Wise DL, et al. Enhanced peripheral nerve regeneration through a poled bioresorbable poly(lactic-co-glycolic acid) guidance channel. J Neural Eng. 2004;1:91–8. es_ES
dc.description.references Yang Y, De Laporte L, Rives CB, Jang J-H, Lin W-C, Shull KR, et al. Neurotrophin releasing single and multiple lumen nerve conduits. J Control Release. 2005;104:433–46. es_ES
dc.description.references Aubert-Pouëssel A, Venier-Julienne M-C, Clavreul A, Sergent M, Jollivet C, Montero-Menei CN, et al. In vitro study of GDNF release from biodegradable PLGA microspheres. J Control Release. 2004;95:463–75. es_ES
dc.description.references Patist CM, Mulder MB, Gautier SE, Maquet V, Jérôme R, Oudega M. Freeze-dried poly(d,l,-lactic acid) macroporous guidance scaffolds impregnated with brain-derived neurotrophic factor in the transected adult rat thoracic spinal cord. Biomaterials. 2004;25:1569–82. es_ES
dc.description.references Saltzman WM, Mak MW, Mahoney MJ, Duenas ET, Cleland JL. Intracranial delivery of recombinant nerve growth factor: release kinetics and protein distribution for three delivery systems. Pharm Res. 1999;16:232–40. es_ES
dc.description.references Hadlock T, Sundback C, Hunter D, Cheney M, Vacanti JP. A polymer foam conduit seeded with Schwann cells promotes guided peripheral nerve regeneration. Tissue Eng. 2000;6(2):119–27. es_ES
dc.description.references Pinzon A, Calancie B, Oudega M, Noga BR. Conduction of impulses by axons regenerated in a Schwann cell graft in the transected adult rat thoracic spinal cord. J Neurosci Res. 2001;64(5):533–41. es_ES
dc.description.references Xu XM, Zhang SX, Li H, Aebischer P, Bunge MB. Regrowth of axons into the distal spinal cord through a Schwann-cell-seeded mini-channel implanted into hemisected adult rat spinal cord. Eur J Neurosci. 1999;11(5):1723–40. es_ES
dc.description.references Paino CL, Bunge MB. Induction of axon growth into Schwann cell implants grafted into lesioned adult rat spinal cord. Exp Neurol. 1991;114(2):254–7. es_ES
dc.description.references Spilker MH, Yannas IV, Kostyk SK, Norregaard TV, Hsu HP, Spector M. The effects of tubulation on healing and scar formation after transection of the adult rat spinal cord. Restor Neurol Neurosci. 2001;18(1):23–38. es_ES
dc.description.references Joosten EAJ, Bär PR, Gispen WH. Collagen implants and cortico-spinal axonal growth after mid-thoracic spinal cord lesion in the adult rat. J Neurosci Res. 1995;41(4):481–90. es_ES
dc.description.references Lore AB, Hubbell JA, Bobb DS, Ballinger ML, Loftin KL, Smith JW, et al. Rapid induction of functional and morphological continuity between severed ends of mammalian or earthworm myelinated axons. J Neurosci. 1999;19(7):2442–54. es_ES
dc.description.references Friedman JA, Windebank AJ, Moore MJ, Spinner RJ, Currier BL, Yaszemski MJ. Biodegradable polymer grafts for surgical repair of the injured spinal cord. Neurosurgery. 2002;51(3):742–52. es_ES
dc.description.references Borgens RB, Shi R, Bohnert D. Behavioral recovery from spinal cord injury following delayed application of polyethylene glycol. J Exp Biol. 2002;205(1):1–12. es_ES
dc.description.references Schmidt CE, Leach JB. Neural tissue engineering: strategies for repair and regeneration. Annu Rev Biomed Eng. 2003;5:293–347. es_ES
dc.description.references Geller HM, Fawcett JW. Building a bridge: engineering spinal cord repair. Exp Neurol. 2002;174(2):125–36. es_ES
dc.description.references Oudega M, Gautier SE, Chapon P, Fragoso M, Bates ML, Parel J-M, et al. Axonal regeneration into Schwann cell grafts within resorbable poly([alpha]-hydroxyacid) guidance channels in the adult rat spinal cord. Biomaterials. 2001;22(10):1125–36. es_ES
dc.description.references Maquet V, Martin D, Scholtes F, Franzen R, Schoenen J, Moonen G, et al. Poly(d,l-lactide) foams modified by poly(ethylene oxide)-block-poly(d,l,-lactide) copolymers and a-FGF: in vitro and in vivo evaluation for spinal cord regeneration. Biomaterials. 2001;22(10):1137–46. es_ES
dc.description.references Giannetti S, Lauretti L, Fernandez E, Salvinelli F, Tamburrini G, Pallini R. Acrylic hydrogel implants after spinal cord lesion in the adult rat. Neurol Res. 2001;23:405–9. es_ES
dc.description.references Woerly S, Pinet E, de Robertis L, Van Diep D, Bousmina M. Spinal cord repair with PHPMA hydrogel containing RGD peptides (NeuroGel(TM)). Biomaterials. 2001;22(10):1095–111. es_ES
dc.description.references Martínez-Ramos C, Lainez S, Sancho F, García Esparza MA, Planells-Cases R, García Verdugo JM, et al. Differentiation of postnatal neural stem cells into glia and functional neurons on laminin-coated polymeric substrates. Tissue Eng A. 2008;14(8):1365–75. es_ES
dc.description.references Peattie RA, Nayate AP, Firpo MA, Shelby J, Fisher RJ, Prestwich GD. Stimulation of in vivo angiogenesis by cytokine-loaded hyaluronic acid hydrogel implants. Biomaterials. 2004;25(14):2789–98. es_ES
dc.description.references Soria JM, Martínez Ramos C, Salmerón Sánchez M, Benavent V, Campillo Fernández A, Gómez Ribelles JL, et al. Survival and differentiation of embryonic neural explants on different biomaterials. J Biomed Mater Res A. 2006;79A(3):495–502. es_ES
dc.description.references Soria JM, Martínez Ramos C, Bahamonde O, García Cruz DM, Salmerón Sánchez M, García Esparza MA, et al. Influence of the substrate’s hydrophilicity on the in vitro Schwann cells viability. J Biomed Mater Res A. 2007;83A(2):463–70. es_ES
dc.description.references Mason MN, Mahoney MJ. A novel composite construct increases the vascularization potential of PEG hydrogels through the incorporation of large fibrin ribbons. J Biomed Mater Res A. 2010;95A(1):283–93. es_ES
dc.description.references Mahoney MJ, Anseth KS. Three-dimensional growth and function of neural tissue in degradable polyethylene glycol hydrogels. Biomaterials. 2006;27(10):2265–74. es_ES
dc.description.references Zhu J. Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Biomaterials. 2010;31(17):4639–56. es_ES
dc.description.references Cha C, Kim SY, Cao L, Kong H. Decoupled control of stiffness and permeability with a cell-encapsulating poly(ethylene glycol) dimethacrylate hydrogel. Biomaterials. 2010;31(18):4864–71. es_ES
dc.description.references Lin-Gibson S, Jones RL, Washburn NR, Horkay F. Structure-property relationships of photopolymerizable poly(ethylene glycol) dimethacrylate hydrogels. Macromolecules. 2005;38(7):2897–902. es_ES
dc.description.references Witte RP, Blake AJ, Palmer C, Kao WJ. Analysis of poly(ethylene glycol)-diacrylate macromer polymerization within a multicomponent semi-interpenetrating polymer network system. J Biomed Mater Res A. 2004;71A(3):508–18. es_ES
dc.description.references Lutolf MP, Hubbell JA. Synthesis and physicochemical characterization of end-linked poly(ethylene glycol)-co-peptide hydrogels formed by Michael-type addition. Biomacromolecules. 2003;4(3):713–22. es_ES
dc.description.references Misra A, Jarrett WL, Urban MW. New poly(methyl methacrylate)/n-butyl acrylate/pentafluorostyrene/poly(ethylene glycol) (p-MMA/nBA/PFS/PEG) colloidal dispersions: synthesis, film formation, and protein adsorption. Macromolecules. 2009;42(19):7299–308. es_ES
dc.description.references Jeong B, Bae YH, Kim SW. Thermoreversible gelation of PEG-PLGA-PEG triblock copolymer aqueous solutions. Macromolecules. 1999;32(21):7064–9. es_ES
dc.description.references Ivirico JLE, Salmerón-Sánchez M, Ribelles JLG, Pradas MM, Soria JM, Gomes ME, et al. Proliferation and differentiation of goat bone marrow stromal cells in 3D scaffolds with tunable hydrophilicity. J Biomed Mater Res B. 2009;91B(1):277–86. es_ES
dc.description.references Kobayashi M, Costanzo RM. Olfactory nerve recovery following mild and severe injury and the efficacy of dexamethasone treatment. Chem Senses. 2009;34(7):573–80. es_ES
dc.description.references Chen BK, Knight AM, de Ruiter GCW, Spinner RJ, Yaszemski MJ, Currier BL, et al. Axon regeneration through scaffold into distal spinal cord after transection. J Neurotrauma. 2009;26(10):1759–71. es_ES
dc.description.references Chehrehasa F, Windus LCE, Ekberg JAK, Scott SE, Amaya D, Mackay-Sim A, et al. Olfactory glia enhance neonatal axon regeneration. Mol Cell Neurosci. 2010;45(3):277–88. es_ES
dc.description.references Barnett SC, Hutchins A-M, Noble M. Purification of olfactory nerve ensheathing cells from the olfactory bulb. Dev Biol. 1993;155(2):337–50. es_ES
dc.description.references Couchman PR. Compositional variation of glass-transition temperatures. 2. Application of the thermodynamic theory to compatible polymer blends. Macromolecules. 1978;11(6):1156–61. es_ES
dc.description.references Kwei TK. The effect of hydrogen bonding on the glass transition temperatures of polymer mixtures. J Polym Sci: Polym Lett Ed. 1984;22(6):307–13. es_ES
dc.description.references Flory PJ. Principles of Polymer Chemistry. Ithaca: Cornell University Press; 1953. es_ES
dc.description.references Mark JE. Experimental determinations of crosslink densities. Rubber Chem Technol. 1982;55(3):762–8. es_ES
dc.description.references Pérez Olmedilla M, Garcia-Giralt N, Pradas MM, Ruiz PB, Gómez Ribelles JL, Palou EC, et al. Response of human chondrocytes to a non-uniform distribution of hydrophilic domains on poly (ethyl acrylate-co-hydroxyethyl methacrylate) copolymers. Biomaterials. 2006;27(7):1003–12. es_ES
dc.description.references García Cruz DM, Coutinho DF, Costa Martinez E, Mano JF, Gómez Ribelles JL, Salmerón Sánchez M. Blending polysaccharides with biodegradable polymers. II. Structure and biological response of chitosan/polycaprolactone blends. J Biomed Mater Res B. 2008;87B(2):544–54. es_ES
dc.description.references Miranda Coelho N, González-García C, Planell JA, Salmerón-Sánchez M, Altankov G. Different assembly of type iv collagen on hydrophilic and hydrophobic substrata alters endothelial cells interaction. Eur Cells Mater. 2010;19:262–72. es_ES
dc.description.references Gugutkov D, Altankov G, Rodríguez Hernández JC, Monleón Pradas M, Salmerón Sánchez M. Fibronectin activity on substrates with controlled –OH density. J Biomed Mater Res A. 2010;92A(1):322–31. es_ES
dc.description.references Mukhatyar VJ, Salmerón-Sánchez M, Rudra S, Mukhopadaya S, Barker TH, García AJ, et al. Role of fibronectin in topographical guidance of neurite extension on electrospun fibers. Biomaterials. 2011;32(16):3958–68. es_ES
dc.description.references Hernández JCR. Substrate chemistry-dependent conformations of single laminin molecules on polymer surfaces are revealed by the phase signal of atomic force microscopy. Biophys J. 2007;93(1):202–7. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem