- -

Synthesis and properties of caprolactone and ethylene glycol copolymers for neural regeneration

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Synthesis and properties of caprolactone and ethylene glycol copolymers for neural regeneration

Mostrar el registro completo del ítem

Escobar Ivirico, JL.; García Cruz, DM.; Araque Monrós, MC.; Martínez Ramos, C.; Monleón Pradas, M. (2012). Synthesis and properties of caprolactone and ethylene glycol copolymers for neural regeneration. Journal of Materials Science: Materials in Medicine. 23(7):1605-1617. https://doi.org/10.1007/s10856-012-4649-8

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/57972

Ficheros en el ítem

Metadatos del ítem

Título: Synthesis and properties of caprolactone and ethylene glycol copolymers for neural regeneration
Autor: Escobar Ivirico, Jorge Luis García Cruz, Dunia Mercedes Araque Monrós, María Carmen Martínez Ramos, Cristina Monleón Pradas, Manuel
Entidad UPV: Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Fecha difusión:
Resumen:
Copolymer networks from poly(ethylene glycol) methacrylate (PEGMA) and caprolactone 2-(methacryloyloxy) ethyl ester were synthesized and the resulting structure of the copolymer network was characterized by differential ...[+]
Palabras clave: Biological performance , Caprolactone , Cell viability , Comonomers , Copolymer networks , Ethyl esters , Hydrophilic and hydrophobic
Derechos de uso: Cerrado
Fuente:
Journal of Materials Science: Materials in Medicine. (issn: 0957-4530 )
DOI: 10.1007/s10856-012-4649-8
Editorial:
Springer Verlag (Germany)
Versión del editor: http://dx.doi.org/10.1007/s10856-012-4649-8
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//MAT2008-06434/ES/MATERIALES PARA REGENERACION NEURAL Y ANGIOGENESIS EN EL SISTEMA NERVIOSO CENTRAL/
Agradecimientos:
The authors acknowledge the support of the Spanish Science & Innovation Ministry through project MAT2008-06434 and the funding by the Centro de Investigacion Principe Felipe through the collaboration agreement from the ...[+]
Tipo: Artículo

References

Sachlos E, Czernuszka JT. Making tissue engineering scaffolds work. Review on the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur Cells Mater. 2003;5:29–40.

Liu C, Xia Z, Czernuszka JT. Design and development of three-dimensional scaffolds for tissue engineering. Chem Eng Res Des. 2007;85:1051–64.

Martín-López E, Nieto-Díaz M, Nieto-Sampedro M. Differential adhesiveness and neurite-promoting activity for neural cells of chitosan, gelatin, and poly-l-lysine films. J Biomater Appl. 2010;26(7):791–809. [+]
Sachlos E, Czernuszka JT. Making tissue engineering scaffolds work. Review on the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur Cells Mater. 2003;5:29–40.

Liu C, Xia Z, Czernuszka JT. Design and development of three-dimensional scaffolds for tissue engineering. Chem Eng Res Des. 2007;85:1051–64.

Martín-López E, Nieto-Díaz M, Nieto-Sampedro M. Differential adhesiveness and neurite-promoting activity for neural cells of chitosan, gelatin, and poly-l-lysine films. J Biomater Appl. 2010;26(7):791–809.

Sakai Y, Matsuyama Y, Takahashi K, Sato T, Hattori T, Nakashima S, et al. New artificial nerve conduits made with photocrosslinked hyaluronic acid for peripheral nerve regeneration. Bio-Med Mater Eng. 2007;17(3):191–7.

Ciardelli G, Chiono V. Materials for peripheral nerve regeneration. Macromol Biosci. 2006;6(1):13–26.

Gingras M, Paradis I, Berthod F. Nerve regeneration in a collagen-chitosan tissue-engineered skin transplanted on nude mice. Biomaterials. 2003;24(9):1653–61.

Ishikawa N, Suzuki Y, Dezawa M, Kataoka K, Ohta M, Cho H, et al. Peripheral nerve regeneration by transplantation of BMSC-derived Schwann cells as chitosan gel sponge scaffolds. J Biomed Mater Res A. 2009;89A(4):1118–24.

Sabater i Serra R, Kyritsis A, Escobar Ivirico JL, Gómez Ribelles JL, Pissis P, Salmerón-Sánchez M. Molecular mobility in biodegradable poly(e-caprolactone)/poly(hydroxyethyl acrylate) networks. Eur Phys J E. 2011;34(4):37.

Ivirico JLE, Martinez EC, Sanchez MS, Criado IM, Ribelles JLG, Pradas MM. Structure and properties of methacrylate-endcapped caprolactone networks with modulated water uptake for biomedical applications. J Biomed Mater Res B. 2007;83B(1):266–75.

Escobar Ivirico JL, Salmerón-Sánchez M, Gómez Ribelles JL, Monleón Pradas M. Poly(l-lactide) networks with tailored water sorption. Colloid Polym Sci. 2009;287(6):671–81.

Escobar Ivirico JL, Salmerón Sánchez M, Sabater i Serra R, Meseguer Dueñas JM, Gómez Ribelles JL, Monleón Pradas M. Structure and properties of poly(ε-caprolactone) networks with modulated water uptake. Macromol Chem Phys. 2006;207(23):2195–205.

Ivirico JLE, Salmerón-Sánchez M, Gómez Ribelles JL, Pradas MM. Biodegradable poly(l-lactide) and polycaprolactone block copolymer networks. Polym Int. 2011;60(2):264–70.

Meseguer-Dueñas J, Más-Estellés J, Castilla-Cortázar I, Escobar Ivirico J, Vidaurre A. Alkaline degradation study of linear and network poly(e-caprolactone). J Mater Sci-Mater Med. 2010;22(1):11–8.

Hadlock T, Elisseeff J, Langer R, Vacanti J, Cheney M. A tissue-engineered conduit for peripheral nerve repair. Arch Otolaryngol Head Neck Surg. 1998;124(10):1081–6.

Teng YD, Lavik EB, Qu X, Park KI, Ourednik J, Zurakowski D, et al. Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proc Natl Acad Sci USA. 2002;99(5):3024–9.

Evans GRD, Brandt K, Widmer MS, Lu L, Meszlenyi RK, Gupta PK, et al. In vivo evaluation of poly(l-lactic acid) porous conduits for peripheral nerve regeneration. Biomaterials. 1999;20(12):1109–15.

Widmer MS, Gupta PK, Lu L, Meszlenyi RK, Evans GRD, Brandt K, et al. Manufacture of porous biodegradable polymer conduits by an extrusion process for guided tissue regeneration. Biomaterials. 1998;19(21):1945–55.

Sundback CA, Shyu JY, Wang Y, Faquin WC, Langer RS, Vacanti JP, et al. Biocompatibility analysis of poly(glycerol sebacate) as a nerve guide material. Biomaterials. 2005;26:5454–64.

Evans GRD, Brandt K, Niederbichler AD, Chauvin P, Hermann S, Bogle M, et al. Clinical long-term in vivo evaluation of poly(l-lactic acid) porous conduits for peripheral nerve regeneration. J Biomater Sci Polym Ed. 2000;11:869–78.

Bryan DJ, Tang JB, Doherty SA, Hile DD, Trantolo DJ, Wise DL, et al. Enhanced peripheral nerve regeneration through a poled bioresorbable poly(lactic-co-glycolic acid) guidance channel. J Neural Eng. 2004;1:91–8.

Yang Y, De Laporte L, Rives CB, Jang J-H, Lin W-C, Shull KR, et al. Neurotrophin releasing single and multiple lumen nerve conduits. J Control Release. 2005;104:433–46.

Aubert-Pouëssel A, Venier-Julienne M-C, Clavreul A, Sergent M, Jollivet C, Montero-Menei CN, et al. In vitro study of GDNF release from biodegradable PLGA microspheres. J Control Release. 2004;95:463–75.

Patist CM, Mulder MB, Gautier SE, Maquet V, Jérôme R, Oudega M. Freeze-dried poly(d,l,-lactic acid) macroporous guidance scaffolds impregnated with brain-derived neurotrophic factor in the transected adult rat thoracic spinal cord. Biomaterials. 2004;25:1569–82.

Saltzman WM, Mak MW, Mahoney MJ, Duenas ET, Cleland JL. Intracranial delivery of recombinant nerve growth factor: release kinetics and protein distribution for three delivery systems. Pharm Res. 1999;16:232–40.

Hadlock T, Sundback C, Hunter D, Cheney M, Vacanti JP. A polymer foam conduit seeded with Schwann cells promotes guided peripheral nerve regeneration. Tissue Eng. 2000;6(2):119–27.

Pinzon A, Calancie B, Oudega M, Noga BR. Conduction of impulses by axons regenerated in a Schwann cell graft in the transected adult rat thoracic spinal cord. J Neurosci Res. 2001;64(5):533–41.

Xu XM, Zhang SX, Li H, Aebischer P, Bunge MB. Regrowth of axons into the distal spinal cord through a Schwann-cell-seeded mini-channel implanted into hemisected adult rat spinal cord. Eur J Neurosci. 1999;11(5):1723–40.

Paino CL, Bunge MB. Induction of axon growth into Schwann cell implants grafted into lesioned adult rat spinal cord. Exp Neurol. 1991;114(2):254–7.

Spilker MH, Yannas IV, Kostyk SK, Norregaard TV, Hsu HP, Spector M. The effects of tubulation on healing and scar formation after transection of the adult rat spinal cord. Restor Neurol Neurosci. 2001;18(1):23–38.

Joosten EAJ, Bär PR, Gispen WH. Collagen implants and cortico-spinal axonal growth after mid-thoracic spinal cord lesion in the adult rat. J Neurosci Res. 1995;41(4):481–90.

Lore AB, Hubbell JA, Bobb DS, Ballinger ML, Loftin KL, Smith JW, et al. Rapid induction of functional and morphological continuity between severed ends of mammalian or earthworm myelinated axons. J Neurosci. 1999;19(7):2442–54.

Friedman JA, Windebank AJ, Moore MJ, Spinner RJ, Currier BL, Yaszemski MJ. Biodegradable polymer grafts for surgical repair of the injured spinal cord. Neurosurgery. 2002;51(3):742–52.

Borgens RB, Shi R, Bohnert D. Behavioral recovery from spinal cord injury following delayed application of polyethylene glycol. J Exp Biol. 2002;205(1):1–12.

Schmidt CE, Leach JB. Neural tissue engineering: strategies for repair and regeneration. Annu Rev Biomed Eng. 2003;5:293–347.

Geller HM, Fawcett JW. Building a bridge: engineering spinal cord repair. Exp Neurol. 2002;174(2):125–36.

Oudega M, Gautier SE, Chapon P, Fragoso M, Bates ML, Parel J-M, et al. Axonal regeneration into Schwann cell grafts within resorbable poly([alpha]-hydroxyacid) guidance channels in the adult rat spinal cord. Biomaterials. 2001;22(10):1125–36.

Maquet V, Martin D, Scholtes F, Franzen R, Schoenen J, Moonen G, et al. Poly(d,l-lactide) foams modified by poly(ethylene oxide)-block-poly(d,l,-lactide) copolymers and a-FGF: in vitro and in vivo evaluation for spinal cord regeneration. Biomaterials. 2001;22(10):1137–46.

Giannetti S, Lauretti L, Fernandez E, Salvinelli F, Tamburrini G, Pallini R. Acrylic hydrogel implants after spinal cord lesion in the adult rat. Neurol Res. 2001;23:405–9.

Woerly S, Pinet E, de Robertis L, Van Diep D, Bousmina M. Spinal cord repair with PHPMA hydrogel containing RGD peptides (NeuroGel(TM)). Biomaterials. 2001;22(10):1095–111.

Martínez-Ramos C, Lainez S, Sancho F, García Esparza MA, Planells-Cases R, García Verdugo JM, et al. Differentiation of postnatal neural stem cells into glia and functional neurons on laminin-coated polymeric substrates. Tissue Eng A. 2008;14(8):1365–75.

Peattie RA, Nayate AP, Firpo MA, Shelby J, Fisher RJ, Prestwich GD. Stimulation of in vivo angiogenesis by cytokine-loaded hyaluronic acid hydrogel implants. Biomaterials. 2004;25(14):2789–98.

Soria JM, Martínez Ramos C, Salmerón Sánchez M, Benavent V, Campillo Fernández A, Gómez Ribelles JL, et al. Survival and differentiation of embryonic neural explants on different biomaterials. J Biomed Mater Res A. 2006;79A(3):495–502.

Soria JM, Martínez Ramos C, Bahamonde O, García Cruz DM, Salmerón Sánchez M, García Esparza MA, et al. Influence of the substrate’s hydrophilicity on the in vitro Schwann cells viability. J Biomed Mater Res A. 2007;83A(2):463–70.

Mason MN, Mahoney MJ. A novel composite construct increases the vascularization potential of PEG hydrogels through the incorporation of large fibrin ribbons. J Biomed Mater Res A. 2010;95A(1):283–93.

Mahoney MJ, Anseth KS. Three-dimensional growth and function of neural tissue in degradable polyethylene glycol hydrogels. Biomaterials. 2006;27(10):2265–74.

Zhu J. Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Biomaterials. 2010;31(17):4639–56.

Cha C, Kim SY, Cao L, Kong H. Decoupled control of stiffness and permeability with a cell-encapsulating poly(ethylene glycol) dimethacrylate hydrogel. Biomaterials. 2010;31(18):4864–71.

Lin-Gibson S, Jones RL, Washburn NR, Horkay F. Structure-property relationships of photopolymerizable poly(ethylene glycol) dimethacrylate hydrogels. Macromolecules. 2005;38(7):2897–902.

Witte RP, Blake AJ, Palmer C, Kao WJ. Analysis of poly(ethylene glycol)-diacrylate macromer polymerization within a multicomponent semi-interpenetrating polymer network system. J Biomed Mater Res A. 2004;71A(3):508–18.

Lutolf MP, Hubbell JA. Synthesis and physicochemical characterization of end-linked poly(ethylene glycol)-co-peptide hydrogels formed by Michael-type addition. Biomacromolecules. 2003;4(3):713–22.

Misra A, Jarrett WL, Urban MW. New poly(methyl methacrylate)/n-butyl acrylate/pentafluorostyrene/poly(ethylene glycol) (p-MMA/nBA/PFS/PEG) colloidal dispersions: synthesis, film formation, and protein adsorption. Macromolecules. 2009;42(19):7299–308.

Jeong B, Bae YH, Kim SW. Thermoreversible gelation of PEG-PLGA-PEG triblock copolymer aqueous solutions. Macromolecules. 1999;32(21):7064–9.

Ivirico JLE, Salmerón-Sánchez M, Ribelles JLG, Pradas MM, Soria JM, Gomes ME, et al. Proliferation and differentiation of goat bone marrow stromal cells in 3D scaffolds with tunable hydrophilicity. J Biomed Mater Res B. 2009;91B(1):277–86.

Kobayashi M, Costanzo RM. Olfactory nerve recovery following mild and severe injury and the efficacy of dexamethasone treatment. Chem Senses. 2009;34(7):573–80.

Chen BK, Knight AM, de Ruiter GCW, Spinner RJ, Yaszemski MJ, Currier BL, et al. Axon regeneration through scaffold into distal spinal cord after transection. J Neurotrauma. 2009;26(10):1759–71.

Chehrehasa F, Windus LCE, Ekberg JAK, Scott SE, Amaya D, Mackay-Sim A, et al. Olfactory glia enhance neonatal axon regeneration. Mol Cell Neurosci. 2010;45(3):277–88.

Barnett SC, Hutchins A-M, Noble M. Purification of olfactory nerve ensheathing cells from the olfactory bulb. Dev Biol. 1993;155(2):337–50.

Couchman PR. Compositional variation of glass-transition temperatures. 2. Application of the thermodynamic theory to compatible polymer blends. Macromolecules. 1978;11(6):1156–61.

Kwei TK. The effect of hydrogen bonding on the glass transition temperatures of polymer mixtures. J Polym Sci: Polym Lett Ed. 1984;22(6):307–13.

Flory PJ. Principles of Polymer Chemistry. Ithaca: Cornell University Press; 1953.

Mark JE. Experimental determinations of crosslink densities. Rubber Chem Technol. 1982;55(3):762–8.

Pérez Olmedilla M, Garcia-Giralt N, Pradas MM, Ruiz PB, Gómez Ribelles JL, Palou EC, et al. Response of human chondrocytes to a non-uniform distribution of hydrophilic domains on poly (ethyl acrylate-co-hydroxyethyl methacrylate) copolymers. Biomaterials. 2006;27(7):1003–12.

García Cruz DM, Coutinho DF, Costa Martinez E, Mano JF, Gómez Ribelles JL, Salmerón Sánchez M. Blending polysaccharides with biodegradable polymers. II. Structure and biological response of chitosan/polycaprolactone blends. J Biomed Mater Res B. 2008;87B(2):544–54.

Miranda Coelho N, González-García C, Planell JA, Salmerón-Sánchez M, Altankov G. Different assembly of type iv collagen on hydrophilic and hydrophobic substrata alters endothelial cells interaction. Eur Cells Mater. 2010;19:262–72.

Gugutkov D, Altankov G, Rodríguez Hernández JC, Monleón Pradas M, Salmerón Sánchez M. Fibronectin activity on substrates with controlled –OH density. J Biomed Mater Res A. 2010;92A(1):322–31.

Mukhatyar VJ, Salmerón-Sánchez M, Rudra S, Mukhopadaya S, Barker TH, García AJ, et al. Role of fibronectin in topographical guidance of neurite extension on electrospun fibers. Biomaterials. 2011;32(16):3958–68.

Hernández JCR. Substrate chemistry-dependent conformations of single laminin molecules on polymer surfaces are revealed by the phase signal of atomic force microscopy. Biophys J. 2007;93(1):202–7.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem