- -

Analytical model to predict the effect of a finite impedance surface on the propagation properties of 2D Sonic Crystals

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Analytical model to predict the effect of a finite impedance surface on the propagation properties of 2D Sonic Crystals

Show full item record

Romero García, V.; Sánchez Pérez, JV.; García Raffi, LM. (2011). Analytical model to predict the effect of a finite impedance surface on the propagation properties of 2D Sonic Crystals. Journal of Physics D: Applied Physics. 44:1-12. https://doi.org/10.1088/0022-3727/44/26/265501

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/58191

Files in this item

Item Metadata

Title: Analytical model to predict the effect of a finite impedance surface on the propagation properties of 2D Sonic Crystals
Author: Romero García, Vicente Sánchez Pérez, Juan Vicente García Raffi, Luis Miguel
UPV Unit: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Issued date:
Abstract:
The use of sonic crystals (SCs) as environmental noise barriers has certain advantages from both the acoustical and the constructive points of view with regard to conventional ones. However, the interaction between the SCs ...[+]
Subjects: Analytical model , Attenuation properties , Environmental noise , Excess attenuation , Experimental data , Finite impedance , Method of images , Multiple-scattering theory , Noise barriers , Numerical predictions , Propagation properties , Semi-analytical model , Sonic crystals , Acoustic impedance , Acoustic noise measurement , Crystals , Mathematical models , Models , Scattering , Two dimensional
Copyrigths: Reserva de todos los derechos
Source:
Journal of Physics D: Applied Physics. (issn: 0022-3727 )
DOI: 10.1088/0022-3727/44/26/265501
Publisher:
IOP Publishing: Hybrid Open Access
Publisher version: http://dx.doi.org/10.1088/0022-3727/44/26/265501
Project ID:
info:eu-repo/grantAgreement/MICINN//MAT2009-09438/ES/Optimizacion, Diseño Y Desarrollo Tecnologico De Dispositivos Basados En Cristales De Sonido Para Aplicaciones Medicas Y Medioambientales/
Thanks:
The authors would like to thank The Open University (UK) for the use of their facilities. This work was supported by the MEC (Spanish Government) and FEDER funds, under Grant No MAT2009-09438.
Type: Artículo

References

Martínez-Sala, R., Sancho, J., Sánchez, J. V., Gómez, V., Llinares, J., & Meseguer, F. (1995). Sound attenuation by sculpture. Nature, 378(6554), 241-241. doi:10.1038/378241a0

Sanchez-Perez, J. V., Rubio, C., Martinez-Sala, R., Sanchez-Grandia, R., & Gomez, V. (2002). Acoustic barriers based on periodic arrays of scatterers. Applied Physics Letters, 81(27), 5240-5242. doi:10.1063/1.1533112

Sánchez-Dehesa, J., Garcia-Chocano, V. M., Torrent, D., Cervera, F., Cabrera, S., & Simon, F. (2011). Noise control by sonic crystal barriers made of recycled materials. The Journal of the Acoustical Society of America, 129(3), 1173-1183. doi:10.1121/1.3531815 [+]
Martínez-Sala, R., Sancho, J., Sánchez, J. V., Gómez, V., Llinares, J., & Meseguer, F. (1995). Sound attenuation by sculpture. Nature, 378(6554), 241-241. doi:10.1038/378241a0

Sanchez-Perez, J. V., Rubio, C., Martinez-Sala, R., Sanchez-Grandia, R., & Gomez, V. (2002). Acoustic barriers based on periodic arrays of scatterers. Applied Physics Letters, 81(27), 5240-5242. doi:10.1063/1.1533112

Sánchez-Dehesa, J., Garcia-Chocano, V. M., Torrent, D., Cervera, F., Cabrera, S., & Simon, F. (2011). Noise control by sonic crystal barriers made of recycled materials. The Journal of the Acoustical Society of America, 129(3), 1173-1183. doi:10.1121/1.3531815

Krynkin, A., Umnova, O., Yung Boon Chong, A., Taherzadeh, S., & Attenborough, K. (2010). Predictions and measurements of sound transmission through a periodic array of elastic shells in air. The Journal of the Acoustical Society of America, 128(6), 3496-3506. doi:10.1121/1.3506342

Sánchez-Pérez, J. V., Caballero, D., Mártinez-Sala, R., Rubio, C., Sánchez-Dehesa, J., Meseguer, F., … Gálvez, F. (1998). Sound Attenuation by a Two-Dimensional Array of Rigid Cylinders. Physical Review Letters, 80(24), 5325-5328. doi:10.1103/physrevlett.80.5325

Liu, Z. (2000). Locally Resonant Sonic Materials. Science, 289(5485), 1734-1736. doi:10.1126/science.289.5485.1734

Tournat, V., Pagneux, V., Lafarge, D., & Jaouen, L. (2004). Multiple scattering of acoustic waves and porous absorbing media. Physical Review E, 70(2). doi:10.1103/physreve.70.026609

Umnova, O., Attenborough, K., & Linton, C. M. (2006). Effects of porous covering on sound attenuation by periodic arrays of cylinders. The Journal of the Acoustical Society of America, 119(1), 278-284. doi:10.1121/1.2133715

Romero-García, V., Fuster, E., García-Raffi, L. M., Sánchez-Pérez, E. A., Sopena, M., Llinares, J., & Sánchez-Pérez, J. V. (2006). Band gap creation using quasiordered structures based on sonic crystals. Applied Physics Letters, 88(17), 174104. doi:10.1063/1.2198012

Romero-García, V., Sánchez-Pérez, J. V., García-Raffi, L. M., Herrero, J. M., García-Nieto, S., & Blasco, X. (2009). Hole distribution in phononic crystals: Design and optimization. The Journal of the Acoustical Society of America, 125(6), 3774-3783. doi:10.1121/1.3126948

Castiñeira-Ibáñez, S., Romero-García, V., Sánchez-Pérez, J. V., & Garcia-Raffi, L. M. (2010). Overlapping of acoustic bandgaps using fractal geometries. EPL (Europhysics Letters), 92(2), 24007. doi:10.1209/0295-5075/92/24007

Záviška, F. (1913). Über die Beugung elektromagnetischer Wellen an parallelen, unendlich langen Kreiszylindern. Annalen der Physik, 345(5), 1023-1056. doi:10.1002/andp.19133450511

Linton, C. M., & Evans, D. V. (1990). The interaction of waves with arrays of vertical circular cylinders. Journal of Fluid Mechanics, 215(-1), 549. doi:10.1017/s0022112090002750

Martin, P. A. (2006). Multiple Scattering. doi:10.1017/cbo9780511735110

Chen, Y.-Y., & Ye, Z. (2001). Theoretical analysis of acoustic stop bands in two-dimensional periodic scattering arrays. Physical Review E, 64(3). doi:10.1103/physreve.64.036616

Boulanger, P., Attenborough, K., Qin, Q., & Linton, C. M. (2005). Reflection of sound from random distributions of semi-cylinders on a hard plane: models and data. Journal of Physics D: Applied Physics, 38(18), 3480-3490. doi:10.1088/0022-3727/38/18/024

Sainidou, R., & Stefanou, N. (2006). Guided and quasiguided elastic waves in phononic crystal slabs. Physical Review B, 73(18). doi:10.1103/physrevb.73.184301

Allen, J. B., & Berkley, D. A. (1979). Image method for efficiently simulating small‐room acoustics. The Journal of the Acoustical Society of America, 65(4), 943-950. doi:10.1121/1.382599

Taherzadeh, S., & Attenborough, K. (1999). Deduction of ground impedance from measurements of excess attenuation spectra. The Journal of the Acoustical Society of America, 105(3), 2039-2042. doi:10.1121/1.426744

LINTON, C. M. (2011). Water waves over arrays of horizontal cylinders: band gaps and Bragg resonance. Journal of Fluid Mechanics, 670, 504-526. doi:10.1017/s0022112010005471

Piercy, J. E., Embleton, T. F. W., & Sutherland, L. C. (1977). Review of noise propagation in the atmosphere. The Journal of the Acoustical Society of America, 61(6), 1403-1418. doi:10.1121/1.381455

Attenborough, K. (1992). Ground parameter information for propagation modeling. The Journal of the Acoustical Society of America, 92(1), 418-427. doi:10.1121/1.404251

Attenborough, K., & Taherzadeh, S. (1995). Propagation from a point source over a rough finite impedance boundary. The Journal of the Acoustical Society of America, 98(3), 1717-1722. doi:10.1121/1.414454

Berenger, J.-P. (1994). A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics, 114(2), 185-200. doi:10.1006/jcph.1994.1159

Kushwaha, M. S., Halevi, P., Martínez, G., Dobrzynski, L., & Djafari-Rouhani, B. (1994). Theory of acoustic band structure of periodic elastic composites. Physical Review B, 49(4), 2313-2322. doi:10.1103/physrevb.49.2313

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record