Mostrar el registro sencillo del ítem
dc.contributor.author | Romero García, Vicente | es_ES |
dc.contributor.author | Sánchez Pérez, Juan Vicente | es_ES |
dc.contributor.author | García Raffi, Luis Miguel | es_ES |
dc.date.accessioned | 2015-11-26T15:04:23Z | |
dc.date.available | 2015-11-26T15:04:23Z | |
dc.date.issued | 2011 | |
dc.identifier.issn | 0022-3727 | |
dc.identifier.uri | http://hdl.handle.net/10251/58191 | |
dc.description.abstract | The use of sonic crystals (SCs) as environmental noise barriers has certain advantages from both the acoustical and the constructive points of view with regard to conventional ones. However, the interaction between the SCs and the ground has not been studied yet. In this work we are reporting a semi-analytical model, based on the multiple scattering theory and on the method of images, to study this interaction considering the ground as a finite impedance surface. The results obtained here show that this model could be used to design more effective noise barriers based on SCs because the excess attenuation of the ground could be modelled in order to improve the attenuation properties of the array of scatterers. The results are compared with experimental data and numerical predictions thus finding good agreement between them. © 2011 IOP Publishing Ltd. | es_ES |
dc.description.sponsorship | The authors would like to thank The Open University (UK) for the use of their facilities. This work was supported by the MEC (Spanish Government) and FEDER funds, under Grant No MAT2009-09438. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | IOP Publishing: Hybrid Open Access | es_ES |
dc.relation.ispartof | Journal of Physics D: Applied Physics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Analytical model | es_ES |
dc.subject | Attenuation properties | es_ES |
dc.subject | Environmental noise | es_ES |
dc.subject | Excess attenuation | es_ES |
dc.subject | Experimental data | es_ES |
dc.subject | Finite impedance | es_ES |
dc.subject | Method of images | es_ES |
dc.subject | Multiple-scattering theory | es_ES |
dc.subject | Noise barriers | es_ES |
dc.subject | Numerical predictions | es_ES |
dc.subject | Propagation properties | es_ES |
dc.subject | Semi-analytical model | es_ES |
dc.subject | Sonic crystals | es_ES |
dc.subject | Acoustic impedance | es_ES |
dc.subject | Acoustic noise measurement | es_ES |
dc.subject | Crystals | es_ES |
dc.subject | Mathematical models | es_ES |
dc.subject | Models | es_ES |
dc.subject | Scattering | es_ES |
dc.subject | Two dimensional | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Analytical model to predict the effect of a finite impedance surface on the propagation properties of 2D Sonic Crystals | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1088/0022-3727/44/26/265501 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MAT2009-09438/ES/Optimizacion, Diseño Y Desarrollo Tecnologico De Dispositivos Basados En Cristales De Sonido Para Aplicaciones Medicas Y Medioambientales/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Romero García, V.; Sánchez Pérez, JV.; García Raffi, LM. (2011). Analytical model to predict the effect of a finite impedance surface on the propagation properties of 2D Sonic Crystals. Journal of Physics D: Applied Physics. 44:1-12. https://doi.org/10.1088/0022-3727/44/26/265501 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1088/0022-3727/44/26/265501 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 12 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 44 | es_ES |
dc.relation.senia | 211026 | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Martínez-Sala, R., Sancho, J., Sánchez, J. V., Gómez, V., Llinares, J., & Meseguer, F. (1995). Sound attenuation by sculpture. Nature, 378(6554), 241-241. doi:10.1038/378241a0 | es_ES |
dc.description.references | Sanchez-Perez, J. V., Rubio, C., Martinez-Sala, R., Sanchez-Grandia, R., & Gomez, V. (2002). Acoustic barriers based on periodic arrays of scatterers. Applied Physics Letters, 81(27), 5240-5242. doi:10.1063/1.1533112 | es_ES |
dc.description.references | Sánchez-Dehesa, J., Garcia-Chocano, V. M., Torrent, D., Cervera, F., Cabrera, S., & Simon, F. (2011). Noise control by sonic crystal barriers made of recycled materials. The Journal of the Acoustical Society of America, 129(3), 1173-1183. doi:10.1121/1.3531815 | es_ES |
dc.description.references | Krynkin, A., Umnova, O., Yung Boon Chong, A., Taherzadeh, S., & Attenborough, K. (2010). Predictions and measurements of sound transmission through a periodic array of elastic shells in air. The Journal of the Acoustical Society of America, 128(6), 3496-3506. doi:10.1121/1.3506342 | es_ES |
dc.description.references | Sánchez-Pérez, J. V., Caballero, D., Mártinez-Sala, R., Rubio, C., Sánchez-Dehesa, J., Meseguer, F., … Gálvez, F. (1998). Sound Attenuation by a Two-Dimensional Array of Rigid Cylinders. Physical Review Letters, 80(24), 5325-5328. doi:10.1103/physrevlett.80.5325 | es_ES |
dc.description.references | Liu, Z. (2000). Locally Resonant Sonic Materials. Science, 289(5485), 1734-1736. doi:10.1126/science.289.5485.1734 | es_ES |
dc.description.references | Tournat, V., Pagneux, V., Lafarge, D., & Jaouen, L. (2004). Multiple scattering of acoustic waves and porous absorbing media. Physical Review E, 70(2). doi:10.1103/physreve.70.026609 | es_ES |
dc.description.references | Umnova, O., Attenborough, K., & Linton, C. M. (2006). Effects of porous covering on sound attenuation by periodic arrays of cylinders. The Journal of the Acoustical Society of America, 119(1), 278-284. doi:10.1121/1.2133715 | es_ES |
dc.description.references | Romero-García, V., Fuster, E., García-Raffi, L. M., Sánchez-Pérez, E. A., Sopena, M., Llinares, J., & Sánchez-Pérez, J. V. (2006). Band gap creation using quasiordered structures based on sonic crystals. Applied Physics Letters, 88(17), 174104. doi:10.1063/1.2198012 | es_ES |
dc.description.references | Romero-García, V., Sánchez-Pérez, J. V., García-Raffi, L. M., Herrero, J. M., García-Nieto, S., & Blasco, X. (2009). Hole distribution in phononic crystals: Design and optimization. The Journal of the Acoustical Society of America, 125(6), 3774-3783. doi:10.1121/1.3126948 | es_ES |
dc.description.references | Castiñeira-Ibáñez, S., Romero-García, V., Sánchez-Pérez, J. V., & Garcia-Raffi, L. M. (2010). Overlapping of acoustic bandgaps using fractal geometries. EPL (Europhysics Letters), 92(2), 24007. doi:10.1209/0295-5075/92/24007 | es_ES |
dc.description.references | Záviška, F. (1913). Über die Beugung elektromagnetischer Wellen an parallelen, unendlich langen Kreiszylindern. Annalen der Physik, 345(5), 1023-1056. doi:10.1002/andp.19133450511 | es_ES |
dc.description.references | Linton, C. M., & Evans, D. V. (1990). The interaction of waves with arrays of vertical circular cylinders. Journal of Fluid Mechanics, 215(-1), 549. doi:10.1017/s0022112090002750 | es_ES |
dc.description.references | Martin, P. A. (2006). Multiple Scattering. doi:10.1017/cbo9780511735110 | es_ES |
dc.description.references | Chen, Y.-Y., & Ye, Z. (2001). Theoretical analysis of acoustic stop bands in two-dimensional periodic scattering arrays. Physical Review E, 64(3). doi:10.1103/physreve.64.036616 | es_ES |
dc.description.references | Boulanger, P., Attenborough, K., Qin, Q., & Linton, C. M. (2005). Reflection of sound from random distributions of semi-cylinders on a hard plane: models and data. Journal of Physics D: Applied Physics, 38(18), 3480-3490. doi:10.1088/0022-3727/38/18/024 | es_ES |
dc.description.references | Sainidou, R., & Stefanou, N. (2006). Guided and quasiguided elastic waves in phononic crystal slabs. Physical Review B, 73(18). doi:10.1103/physrevb.73.184301 | es_ES |
dc.description.references | Allen, J. B., & Berkley, D. A. (1979). Image method for efficiently simulating small‐room acoustics. The Journal of the Acoustical Society of America, 65(4), 943-950. doi:10.1121/1.382599 | es_ES |
dc.description.references | Taherzadeh, S., & Attenborough, K. (1999). Deduction of ground impedance from measurements of excess attenuation spectra. The Journal of the Acoustical Society of America, 105(3), 2039-2042. doi:10.1121/1.426744 | es_ES |
dc.description.references | LINTON, C. M. (2011). Water waves over arrays of horizontal cylinders: band gaps and Bragg resonance. Journal of Fluid Mechanics, 670, 504-526. doi:10.1017/s0022112010005471 | es_ES |
dc.description.references | Piercy, J. E., Embleton, T. F. W., & Sutherland, L. C. (1977). Review of noise propagation in the atmosphere. The Journal of the Acoustical Society of America, 61(6), 1403-1418. doi:10.1121/1.381455 | es_ES |
dc.description.references | Attenborough, K. (1992). Ground parameter information for propagation modeling. The Journal of the Acoustical Society of America, 92(1), 418-427. doi:10.1121/1.404251 | es_ES |
dc.description.references | Attenborough, K., & Taherzadeh, S. (1995). Propagation from a point source over a rough finite impedance boundary. The Journal of the Acoustical Society of America, 98(3), 1717-1722. doi:10.1121/1.414454 | es_ES |
dc.description.references | Berenger, J.-P. (1994). A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics, 114(2), 185-200. doi:10.1006/jcph.1994.1159 | es_ES |
dc.description.references | Kushwaha, M. S., Halevi, P., Martínez, G., Dobrzynski, L., & Djafari-Rouhani, B. (1994). Theory of acoustic band structure of periodic elastic composites. Physical Review B, 49(4), 2313-2322. doi:10.1103/physrevb.49.2313 | es_ES |