Mostrar el registro sencillo del ítem
dc.contributor.author | Herrera Fernández, Antonio Manuel | es_ES |
dc.contributor.author | Izquierdo Sebastián, Joaquín | es_ES |
dc.contributor.author | Pérez García, Rafael | es_ES |
dc.contributor.author | Ayala Cabrera, David | es_ES |
dc.date.accessioned | 2015-11-30T10:48:22Z | |
dc.date.available | 2015-11-30T10:48:22Z | |
dc.date.issued | 2014 | |
dc.identifier.uri | http://hdl.handle.net/10251/58309 | |
dc.description.abstract | [EN] This paper proposes a multiple kernel regression (MKr) to predict water demand in the presence of a continuous source of infor- mation. MKr extends the simple support vector regression (SVR) to a combination of kernels from as many distinct types as kinds of input data are available. In addition, two on-line learning methods to obtain real time predictions as new data arrives to the system are tested by a real-world case study. The accuracy and computational efficiency of the results indicate that our proposal is a suitable tool for making adequate management decisions in the smart cities environment. | es_ES |
dc.description.sponsorship | This work has been supported by project IDAWAS, DPI2009- 11591, of the Direccion General de Investigacion of the Ministerio de Ciencia e Innovacion of Spain, and ACOMP/ 2011/ 188 of the Conselleria d'Educacio of the Generalitat Valenciana. | |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Procedia Engineering | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Smart cities | es_ES |
dc.subject | Urban water demand | es_ES |
dc.subject | Kernel regression | es_ES |
dc.subject | On-line learning | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.subject.classification | MECANICA DE FLUIDOS | es_ES |
dc.subject.classification | INGENIERIA HIDRAULICA | es_ES |
dc.title | On-line learning of predictive kernel models for urban water demand in a smart city | es_ES |
dc.type | Artículo | es_ES |
dc.type | Comunicación en congreso | |
dc.identifier.doi | 10.1016/j.proeng.2014.02.086 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//DPI2009-11591/ES/Aplicacion De Herramientas Del Analisis Inteligente De Datos En La Gestion Tecnica De Sistemas De Distribucion Y Evacuacion De Aguas/ / | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//ACOMP%2F2011%2F188/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient | es_ES |
dc.description.bibliographicCitation | Herrera Fernández, AM.; Izquierdo Sebastián, J.; Pérez García, R.; Ayala Cabrera, D. (2014). On-line learning of predictive kernel models for urban water demand in a smart city. Procedia Engineering. 70:791-799. https://doi.org/10.1016/j.proeng.2014.02.086 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | 12th International Conference on Computing-and-Control-for-the-Water-Industry (CCWI) | |
dc.relation.conferencedate | September 02-04, 2013 | |
dc.relation.conferenceplace | Perugia, Italy | |
dc.relation.publisherversion | http://dx.doi.org/10.1016/j.proeng.2014.02.086 | es_ES |
dc.description.upvformatpinicio | 791 | es_ES |
dc.description.upvformatpfin | 799 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 70 | es_ES |
dc.relation.senia | 278179 | es_ES |
dc.identifier.eissn | 1877-7058 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | |
dc.contributor.funder | Generalitat Valenciana |