Mostrar el registro sencillo del ítem
dc.contributor.author | Torrent Martí, Daniel | es_ES |
dc.contributor.author | Mayou, Didier | es_ES |
dc.contributor.author | Sánchez-Dehesa Moreno-Cid, José | es_ES |
dc.date.accessioned | 2015-12-03T07:58:35Z | |
dc.date.available | 2015-12-03T07:58:35Z | |
dc.date.issued | 2013-03-27 | |
dc.identifier.issn | 1098-0121 | |
dc.identifier.uri | http://hdl.handle.net/10251/58489 | |
dc.description.abstract | An elastic analog of graphene is introduced and analyzed. The system consists of a honeycomb arrangement of spring-mass resonators attached to a thin elastic layer, and the propagation properties of flexural waves along it is studied. The band-structure calculation shows the presence of Dirac points near the K point of the Brillouin zone. Analytical expressions are found for both Dirac frequency and velocity as a function of the resonator s parameters. Finally, the bounded modes of infinitely long ribbons of this honeycomb arrangement are analyzed. The presence of edge states, which are studied using multiple scattering theory, is shown. It is concluded that these structures can be used to control the propagation of flexural waves in thin plates. | es_ES |
dc.description.sponsorship | This work was partially supported by the Spanish Ministerio de Ciencia e Innovacion (MICINN) under Contracts No. TEC2010-19751 and No. CSD2008-66 (the CONSOLIDER program) and by the US Office of Naval Research. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | American Physical Society | es_ES |
dc.relation.ispartof | Physical Review B | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Dirac cone | es_ES |
dc.subject | Acoustic analogues | es_ES |
dc.subject | Flexural waves | es_ES |
dc.subject | Edge states | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Elastic analog of graphene: Dirac cones and edge states for flexural waves in thin plates | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1103/PhysRevB.87.115143 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TEC2010-19751/ES/NUEVOS DISPOSITIVOS BASADOS EN METAMATERIALES ELECTROMAGNETICOS Y ACUSTICOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CSD2008-00066/ES/Ingeniería de Metamateriales/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.description.bibliographicCitation | Torrent Martí, D.; Mayou, D.; Sánchez-Dehesa Moreno-Cid, J. (2013). Elastic analog of graphene: Dirac cones and edge states for flexural waves in thin plates. Physical Review B. 87(11). https://doi.org/10.1103/PhysRevB.87.115143 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1103/PhysRevB.87.115143 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 87 | es_ES |
dc.description.issue | 11 | es_ES |
dc.relation.senia | 255057 | es_ES |
dc.identifier.eissn | 1550-235X | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Office of Naval Research | es_ES |
dc.description.references | Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Katsnelson, M. I., Grigorieva, I. V., … Firsov, A. A. (2005). Two-dimensional gas of massless Dirac fermions in graphene. Nature, 438(7065), 197-200. doi:10.1038/nature04233 | es_ES |
dc.description.references | Katsnelson, M. I., Novoselov, K. S., & Geim, A. K. (2006). Chiral tunnelling and the Klein paradox in graphene. Nature Physics, 2(9), 620-625. doi:10.1038/nphys384 | es_ES |
dc.description.references | Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6(3), 183-191. doi:10.1038/nmat1849 | es_ES |
dc.description.references | Beenakker, C. W. J. (2008). Colloquium: Andreev reflection and Klein tunneling in graphene. Reviews of Modern Physics, 80(4), 1337-1354. doi:10.1103/revmodphys.80.1337 | es_ES |
dc.description.references | Peres, N. M. R. (2010). Colloquium: The transport properties of graphene: An introduction. Reviews of Modern Physics, 82(3), 2673-2700. doi:10.1103/revmodphys.82.2673 | es_ES |
dc.description.references | Ochiai, T., & Onoda, M. (2009). Photonic analog of graphene model and its extension: Dirac cone, symmetry, and edge states. Physical Review B, 80(15). doi:10.1103/physrevb.80.155103 | es_ES |
dc.description.references | Han, D., Lai, Y., Zi, J., Zhang, Z.-Q., & Chan, C. T. (2009). Dirac Spectra and Edge States in Honeycomb Plasmonic Lattices. Physical Review Letters, 102(12). doi:10.1103/physrevlett.102.123904 | es_ES |
dc.description.references | Bittner, S., Dietz, B., Miski-Oglu, M., Oria Iriarte, P., Richter, A., & Schäfer, F. (2010). Observation of a Dirac point in microwave experiments with a photonic crystal modeling graphene. Physical Review B, 82(1). doi:10.1103/physrevb.82.014301 | es_ES |
dc.description.references | Zhong, W., & Zhang, X. (2011). Dirac-cone photonic surface states in three-dimensional photonic crystal slab. Optics Express, 19(15), 13738. doi:10.1364/oe.19.013738 | es_ES |
dc.description.references | Sakoda, K. (2012). Proof of the universality of mode symmetries in creating photonic Dirac cones. Optics Express, 20(22), 25181. doi:10.1364/oe.20.025181 | es_ES |
dc.description.references | Zhang, X., & Liu, Z. (2008). Extremal Transmission and Beating Effect of Acoustic Waves in Two-Dimensional Sonic Crystals. Physical Review Letters, 101(26). doi:10.1103/physrevlett.101.264303 | es_ES |
dc.description.references | Zhong, W., & Zhang, X. (2011). Acoustic analog of monolayer graphene and edge states. Physics Letters A, 375(40), 3533-3536. doi:10.1016/j.physleta.2011.08.027 | es_ES |
dc.description.references | Torrent, D., & Sánchez-Dehesa, J. (2012). Acoustic Analogue of Graphene: Observation of Dirac Cones in Acoustic Surface Waves. Physical Review Letters, 108(17). doi:10.1103/physrevlett.108.174301 | es_ES |
dc.description.references | Zhang, X. (2008). ObservingZitterbewegungfor Photons near the Dirac Point of a Two-Dimensional Photonic Crystal. Physical Review Letters, 100(11). doi:10.1103/physrevlett.100.113903 | es_ES |
dc.description.references | Huang, X., Lai, Y., Hang, Z. H., Zheng, H., & Chan, C. T. (2011). Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials. Nature Materials, 10(8), 582-586. doi:10.1038/nmat3030 | es_ES |
dc.description.references | Zandbergen, S. R., & de Dood, M. J. A. (2010). Experimental Observation of Strong Edge Effects on the Pseudodiffusive Transport of Light in Photonic Graphene. Physical Review Letters, 104(4). doi:10.1103/physrevlett.104.043903 | es_ES |
dc.description.references | Sepkhanov, R. A., Bazaliy, Y. B., & Beenakker, C. W. J. (2007). Extremal transmission at the Dirac point of a photonic band structure. Physical Review A, 75(6). doi:10.1103/physreva.75.063813 | es_ES |
dc.description.references | Bittner, S., Dietz, B., Miski-Oglu, M., & Richter, A. (2012). Extremal transmission through a microwave photonic crystal and the observation of edge states in a rectangular Dirac billiard. Physical Review B, 85(6). doi:10.1103/physrevb.85.064301 | es_ES |
dc.description.references | Wang, Z., Chong, Y. D., Joannopoulos, J. D., & Soljačić, M. (2008). Reflection-Free One-Way Edge Modes in a Gyromagnetic Photonic Crystal. Physical Review Letters, 100(1). doi:10.1103/physrevlett.100.013905 | es_ES |
dc.description.references | Raghu, S., & Haldane, F. D. M. (2008). Analogs of quantum-Hall-effect edge states in photonic crystals. Physical Review A, 78(3). doi:10.1103/physreva.78.033834 | es_ES |
dc.description.references | Haldane, F. D. M., & Raghu, S. (2008). Possible Realization of Directional Optical Waveguides in Photonic Crystals with Broken Time-Reversal Symmetry. Physical Review Letters, 100(1). doi:10.1103/physrevlett.100.013904 | es_ES |
dc.description.references | Poo, Y., Wu, R., Lin, Z., Yang, Y., & Chan, C. T. (2011). Experimental Realization of Self-Guiding Unidirectional Electromagnetic Edge States. Physical Review Letters, 106(9). doi:10.1103/physrevlett.106.093903 | es_ES |
dc.description.references | Hsu, J.-C., & Wu, T.-T. (2006). Efficient formulation for band-structure calculations of two-dimensional phononic-crystal plates. Physical Review B, 74(14). doi:10.1103/physrevb.74.144303 | es_ES |
dc.description.references | Wu, T.-T., Huang, Z.-G., Tsai, T.-C., & Wu, T.-C. (2008). Evidence of complete band gap and resonances in a plate with periodic stubbed surface. Applied Physics Letters, 93(11), 111902. doi:10.1063/1.2970992 | es_ES |
dc.description.references | Oudich, M., Li, Y., Assouar, B. M., & Hou, Z. (2010). A sonic band gap based on the locally resonant phononic plates with stubs. New Journal of Physics, 12(8), 083049. doi:10.1088/1367-2630/12/8/083049 | es_ES |
dc.description.references | Xiao, Y., Wen, J., & Wen, X. (2012). Flexural wave band gaps in locally resonant thin plates with periodically attached spring–mass resonators. Journal of Physics D: Applied Physics, 45(19), 195401. doi:10.1088/0022-3727/45/19/195401 | es_ES |
dc.description.references | Tsung-Tsong Wu, Jin-Chen Hsu, & Jia-Hong Sun. (2011). Phononic plate waves. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 58(10), 2146-2161. doi:10.1109/tuffc.2011.2064 | es_ES |
dc.description.references | Farhat, M., Guenneau, S., & Enoch, S. (2010). High directivity and confinement of flexural waves through ultra-refraction in thin perforated plates. EPL (Europhysics Letters), 91(5), 54003. doi:10.1209/0295-5075/91/54003 | es_ES |
dc.description.references | Farhat, M., Guenneau, S., Enoch, S., Movchan, A. B., & Petursson, G. G. (2010). Focussing bending waves via negative refraction in perforated thin plates. Applied Physics Letters, 96(8), 081909. doi:10.1063/1.3327813 | es_ES |
dc.description.references | Bramhavar, S., Prada, C., Maznev, A. A., Every, A. G., Norris, T. B., & Murray, T. W. (2011). Negative refraction and focusing of elastic Lamb waves at an interface. Physical Review B, 83(1). doi:10.1103/physrevb.83.014106 | es_ES |
dc.description.references | Farhat, M., Guenneau, S., Enoch, S., & Movchan, A. B. (2009). Cloaking bending waves propagating in thin elastic plates. Physical Review B, 79(3). doi:10.1103/physrevb.79.033102 | es_ES |
dc.description.references | Farhat, M., Guenneau, S., & Enoch, S. (2009). Ultrabroadband Elastic Cloaking in Thin Plates. Physical Review Letters, 103(2). doi:10.1103/physrevlett.103.024301 | es_ES |
dc.description.references | Stenger, N., Wilhelm, M., & Wegener, M. (2012). Experiments on Elastic Cloaking in Thin Plates. Physical Review Letters, 108(1). doi:10.1103/physrevlett.108.014301 | es_ES |
dc.description.references | Nakada, K., Fujita, M., Dresselhaus, G., & Dresselhaus, M. S. (1996). Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Physical Review B, 54(24), 17954-17961. doi:10.1103/physrevb.54.17954 | es_ES |
dc.description.references | Foldy, L. L. (1945). The Multiple Scattering of Waves. I. General Theory of Isotropic Scattering by Randomly Distributed Scatterers. Physical Review, 67(3-4), 107-119. doi:10.1103/physrev.67.107 | es_ES |
dc.description.references | Martin, P. A. (2006). Multiple Scattering. doi:10.1017/cbo9780511735110 | es_ES |