- -

Elastic analog of graphene: Dirac cones and edge states for flexural waves in thin plates

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Elastic analog of graphene: Dirac cones and edge states for flexural waves in thin plates

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Torrent Martí, Daniel es_ES
dc.contributor.author Mayou, Didier es_ES
dc.contributor.author Sánchez-Dehesa Moreno-Cid, José es_ES
dc.date.accessioned 2015-12-03T07:58:35Z
dc.date.available 2015-12-03T07:58:35Z
dc.date.issued 2013-03-27
dc.identifier.issn 1098-0121
dc.identifier.uri http://hdl.handle.net/10251/58489
dc.description.abstract An elastic analog of graphene is introduced and analyzed. The system consists of a honeycomb arrangement of spring-mass resonators attached to a thin elastic layer, and the propagation properties of flexural waves along it is studied. The band-structure calculation shows the presence of Dirac points near the K point of the Brillouin zone. Analytical expressions are found for both Dirac frequency and velocity as a function of the resonator s parameters. Finally, the bounded modes of infinitely long ribbons of this honeycomb arrangement are analyzed. The presence of edge states, which are studied using multiple scattering theory, is shown. It is concluded that these structures can be used to control the propagation of flexural waves in thin plates. es_ES
dc.description.sponsorship This work was partially supported by the Spanish Ministerio de Ciencia e Innovacion (MICINN) under Contracts No. TEC2010-19751 and No. CSD2008-66 (the CONSOLIDER program) and by the US Office of Naval Research. en_EN
dc.language Inglés es_ES
dc.publisher American Physical Society es_ES
dc.relation.ispartof Physical Review B es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Dirac cone es_ES
dc.subject Acoustic analogues es_ES
dc.subject Flexural waves es_ES
dc.subject Edge states es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Elastic analog of graphene: Dirac cones and edge states for flexural waves in thin plates es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1103/PhysRevB.87.115143
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TEC2010-19751/ES/NUEVOS DISPOSITIVOS BASADOS EN METAMATERIALES ELECTROMAGNETICOS Y ACUSTICOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CSD2008-00066/ES/Ingeniería de Metamateriales/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Torrent Martí, D.; Mayou, D.; Sánchez-Dehesa Moreno-Cid, J. (2013). Elastic analog of graphene: Dirac cones and edge states for flexural waves in thin plates. Physical Review B. 87(11). https://doi.org/10.1103/PhysRevB.87.115143 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1103/PhysRevB.87.115143 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 87 es_ES
dc.description.issue 11 es_ES
dc.relation.senia 255057 es_ES
dc.identifier.eissn 1550-235X
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Office of Naval Research es_ES
dc.description.references Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Katsnelson, M. I., Grigorieva, I. V., … Firsov, A. A. (2005). Two-dimensional gas of massless Dirac fermions in graphene. Nature, 438(7065), 197-200. doi:10.1038/nature04233 es_ES
dc.description.references Katsnelson, M. I., Novoselov, K. S., & Geim, A. K. (2006). Chiral tunnelling and the Klein paradox in graphene. Nature Physics, 2(9), 620-625. doi:10.1038/nphys384 es_ES
dc.description.references Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6(3), 183-191. doi:10.1038/nmat1849 es_ES
dc.description.references Beenakker, C. W. J. (2008). Colloquium: Andreev reflection and Klein tunneling in graphene. Reviews of Modern Physics, 80(4), 1337-1354. doi:10.1103/revmodphys.80.1337 es_ES
dc.description.references Peres, N. M. R. (2010). Colloquium: The transport properties of graphene: An introduction. Reviews of Modern Physics, 82(3), 2673-2700. doi:10.1103/revmodphys.82.2673 es_ES
dc.description.references Ochiai, T., & Onoda, M. (2009). Photonic analog of graphene model and its extension: Dirac cone, symmetry, and edge states. Physical Review B, 80(15). doi:10.1103/physrevb.80.155103 es_ES
dc.description.references Han, D., Lai, Y., Zi, J., Zhang, Z.-Q., & Chan, C. T. (2009). Dirac Spectra and Edge States in Honeycomb Plasmonic Lattices. Physical Review Letters, 102(12). doi:10.1103/physrevlett.102.123904 es_ES
dc.description.references Bittner, S., Dietz, B., Miski-Oglu, M., Oria Iriarte, P., Richter, A., & Schäfer, F. (2010). Observation of a Dirac point in microwave experiments with a photonic crystal modeling graphene. Physical Review B, 82(1). doi:10.1103/physrevb.82.014301 es_ES
dc.description.references Zhong, W., & Zhang, X. (2011). Dirac-cone photonic surface states in three-dimensional photonic crystal slab. Optics Express, 19(15), 13738. doi:10.1364/oe.19.013738 es_ES
dc.description.references Sakoda, K. (2012). Proof of the universality of mode symmetries in creating photonic Dirac cones. Optics Express, 20(22), 25181. doi:10.1364/oe.20.025181 es_ES
dc.description.references Zhang, X., & Liu, Z. (2008). Extremal Transmission and Beating Effect of Acoustic Waves in Two-Dimensional Sonic Crystals. Physical Review Letters, 101(26). doi:10.1103/physrevlett.101.264303 es_ES
dc.description.references Zhong, W., & Zhang, X. (2011). Acoustic analog of monolayer graphene and edge states. Physics Letters A, 375(40), 3533-3536. doi:10.1016/j.physleta.2011.08.027 es_ES
dc.description.references Torrent, D., & Sánchez-Dehesa, J. (2012). Acoustic Analogue of Graphene: Observation of Dirac Cones in Acoustic Surface Waves. Physical Review Letters, 108(17). doi:10.1103/physrevlett.108.174301 es_ES
dc.description.references Zhang, X. (2008). ObservingZitterbewegungfor Photons near the Dirac Point of a Two-Dimensional Photonic Crystal. Physical Review Letters, 100(11). doi:10.1103/physrevlett.100.113903 es_ES
dc.description.references Huang, X., Lai, Y., Hang, Z. H., Zheng, H., & Chan, C. T. (2011). Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials. Nature Materials, 10(8), 582-586. doi:10.1038/nmat3030 es_ES
dc.description.references Zandbergen, S. R., & de Dood, M. J. A. (2010). Experimental Observation of Strong Edge Effects on the Pseudodiffusive Transport of Light in Photonic Graphene. Physical Review Letters, 104(4). doi:10.1103/physrevlett.104.043903 es_ES
dc.description.references Sepkhanov, R. A., Bazaliy, Y. B., & Beenakker, C. W. J. (2007). Extremal transmission at the Dirac point of a photonic band structure. Physical Review A, 75(6). doi:10.1103/physreva.75.063813 es_ES
dc.description.references Bittner, S., Dietz, B., Miski-Oglu, M., & Richter, A. (2012). Extremal transmission through a microwave photonic crystal and the observation of edge states in a rectangular Dirac billiard. Physical Review B, 85(6). doi:10.1103/physrevb.85.064301 es_ES
dc.description.references Wang, Z., Chong, Y. D., Joannopoulos, J. D., & Soljačić, M. (2008). Reflection-Free One-Way Edge Modes in a Gyromagnetic Photonic Crystal. Physical Review Letters, 100(1). doi:10.1103/physrevlett.100.013905 es_ES
dc.description.references Raghu, S., & Haldane, F. D. M. (2008). Analogs of quantum-Hall-effect edge states in photonic crystals. Physical Review A, 78(3). doi:10.1103/physreva.78.033834 es_ES
dc.description.references Haldane, F. D. M., & Raghu, S. (2008). Possible Realization of Directional Optical Waveguides in Photonic Crystals with Broken Time-Reversal Symmetry. Physical Review Letters, 100(1). doi:10.1103/physrevlett.100.013904 es_ES
dc.description.references Poo, Y., Wu, R., Lin, Z., Yang, Y., & Chan, C. T. (2011). Experimental Realization of Self-Guiding Unidirectional Electromagnetic Edge States. Physical Review Letters, 106(9). doi:10.1103/physrevlett.106.093903 es_ES
dc.description.references Hsu, J.-C., & Wu, T.-T. (2006). Efficient formulation for band-structure calculations of two-dimensional phononic-crystal plates. Physical Review B, 74(14). doi:10.1103/physrevb.74.144303 es_ES
dc.description.references Wu, T.-T., Huang, Z.-G., Tsai, T.-C., & Wu, T.-C. (2008). Evidence of complete band gap and resonances in a plate with periodic stubbed surface. Applied Physics Letters, 93(11), 111902. doi:10.1063/1.2970992 es_ES
dc.description.references Oudich, M., Li, Y., Assouar, B. M., & Hou, Z. (2010). A sonic band gap based on the locally resonant phononic plates with stubs. New Journal of Physics, 12(8), 083049. doi:10.1088/1367-2630/12/8/083049 es_ES
dc.description.references Xiao, Y., Wen, J., & Wen, X. (2012). Flexural wave band gaps in locally resonant thin plates with periodically attached spring–mass resonators. Journal of Physics D: Applied Physics, 45(19), 195401. doi:10.1088/0022-3727/45/19/195401 es_ES
dc.description.references Tsung-Tsong Wu, Jin-Chen Hsu, & Jia-Hong Sun. (2011). Phononic plate waves. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 58(10), 2146-2161. doi:10.1109/tuffc.2011.2064 es_ES
dc.description.references Farhat, M., Guenneau, S., & Enoch, S. (2010). High directivity and confinement of flexural waves through ultra-refraction in thin perforated plates. EPL (Europhysics Letters), 91(5), 54003. doi:10.1209/0295-5075/91/54003 es_ES
dc.description.references Farhat, M., Guenneau, S., Enoch, S., Movchan, A. B., & Petursson, G. G. (2010). Focussing bending waves via negative refraction in perforated thin plates. Applied Physics Letters, 96(8), 081909. doi:10.1063/1.3327813 es_ES
dc.description.references Bramhavar, S., Prada, C., Maznev, A. A., Every, A. G., Norris, T. B., & Murray, T. W. (2011). Negative refraction and focusing of elastic Lamb waves at an interface. Physical Review B, 83(1). doi:10.1103/physrevb.83.014106 es_ES
dc.description.references Farhat, M., Guenneau, S., Enoch, S., & Movchan, A. B. (2009). Cloaking bending waves propagating in thin elastic plates. Physical Review B, 79(3). doi:10.1103/physrevb.79.033102 es_ES
dc.description.references Farhat, M., Guenneau, S., & Enoch, S. (2009). Ultrabroadband Elastic Cloaking in Thin Plates. Physical Review Letters, 103(2). doi:10.1103/physrevlett.103.024301 es_ES
dc.description.references Stenger, N., Wilhelm, M., & Wegener, M. (2012). Experiments on Elastic Cloaking in Thin Plates. Physical Review Letters, 108(1). doi:10.1103/physrevlett.108.014301 es_ES
dc.description.references Nakada, K., Fujita, M., Dresselhaus, G., & Dresselhaus, M. S. (1996). Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Physical Review B, 54(24), 17954-17961. doi:10.1103/physrevb.54.17954 es_ES
dc.description.references Foldy, L. L. (1945). The Multiple Scattering of Waves. I. General Theory of Isotropic Scattering by Randomly Distributed Scatterers. Physical Review, 67(3-4), 107-119. doi:10.1103/physrev.67.107 es_ES
dc.description.references Martin, P. A. (2006). Multiple Scattering. doi:10.1017/cbo9780511735110 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem