- -

Elastic analog of graphene: Dirac cones and edge states for flexural waves in thin plates

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Elastic analog of graphene: Dirac cones and edge states for flexural waves in thin plates

Mostrar el registro completo del ítem

Torrent Martí, D.; Mayou, D.; Sánchez-Dehesa Moreno-Cid, J. (2013). Elastic analog of graphene: Dirac cones and edge states for flexural waves in thin plates. Physical Review B. 87(11). https://doi.org/10.1103/PhysRevB.87.115143

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/58489

Ficheros en el ítem

Metadatos del ítem

Título: Elastic analog of graphene: Dirac cones and edge states for flexural waves in thin plates
Autor: Torrent Martí, Daniel Mayou, Didier Sánchez-Dehesa Moreno-Cid, José
Entidad UPV: Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat
Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Fecha difusión:
Resumen:
An elastic analog of graphene is introduced and analyzed. The system consists of a honeycomb arrangement of spring-mass resonators attached to a thin elastic layer, and the propagation properties of flexural waves along ...[+]
Palabras clave: Dirac cone , Acoustic analogues , Flexural waves , Edge states
Derechos de uso: Reserva de todos los derechos
Fuente:
Physical Review B. (issn: 1098-0121 ) (eissn: 1550-235X )
DOI: 10.1103/PhysRevB.87.115143
Editorial:
American Physical Society
Versión del editor: http://dx.doi.org/10.1103/PhysRevB.87.115143
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//TEC2010-19751/ES/NUEVOS DISPOSITIVOS BASADOS EN METAMATERIALES ELECTROMAGNETICOS Y ACUSTICOS/
info:eu-repo/grantAgreement/MICINN//CSD2008-00066/ES/Ingeniería de Metamateriales/
Agradecimientos:
This work was partially supported by the Spanish Ministerio de Ciencia e Innovacion (MICINN) under Contracts No. TEC2010-19751 and No. CSD2008-66 (the CONSOLIDER program) and by the US Office of Naval Research.
Tipo: Artículo

References

Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Katsnelson, M. I., Grigorieva, I. V., … Firsov, A. A. (2005). Two-dimensional gas of massless Dirac fermions in graphene. Nature, 438(7065), 197-200. doi:10.1038/nature04233

Katsnelson, M. I., Novoselov, K. S., & Geim, A. K. (2006). Chiral tunnelling and the Klein paradox in graphene. Nature Physics, 2(9), 620-625. doi:10.1038/nphys384

Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6(3), 183-191. doi:10.1038/nmat1849 [+]
Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Katsnelson, M. I., Grigorieva, I. V., … Firsov, A. A. (2005). Two-dimensional gas of massless Dirac fermions in graphene. Nature, 438(7065), 197-200. doi:10.1038/nature04233

Katsnelson, M. I., Novoselov, K. S., & Geim, A. K. (2006). Chiral tunnelling and the Klein paradox in graphene. Nature Physics, 2(9), 620-625. doi:10.1038/nphys384

Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6(3), 183-191. doi:10.1038/nmat1849

Beenakker, C. W. J. (2008). Colloquium: Andreev reflection and Klein tunneling in graphene. Reviews of Modern Physics, 80(4), 1337-1354. doi:10.1103/revmodphys.80.1337

Peres, N. M. R. (2010). Colloquium: The transport properties of graphene: An introduction. Reviews of Modern Physics, 82(3), 2673-2700. doi:10.1103/revmodphys.82.2673

Ochiai, T., & Onoda, M. (2009). Photonic analog of graphene model and its extension: Dirac cone, symmetry, and edge states. Physical Review B, 80(15). doi:10.1103/physrevb.80.155103

Han, D., Lai, Y., Zi, J., Zhang, Z.-Q., & Chan, C. T. (2009). Dirac Spectra and Edge States in Honeycomb Plasmonic Lattices. Physical Review Letters, 102(12). doi:10.1103/physrevlett.102.123904

Bittner, S., Dietz, B., Miski-Oglu, M., Oria Iriarte, P., Richter, A., & Schäfer, F. (2010). Observation of a Dirac point in microwave experiments with a photonic crystal modeling graphene. Physical Review B, 82(1). doi:10.1103/physrevb.82.014301

Zhong, W., & Zhang, X. (2011). Dirac-cone photonic surface states in three-dimensional photonic crystal slab. Optics Express, 19(15), 13738. doi:10.1364/oe.19.013738

Sakoda, K. (2012). Proof of the universality of mode symmetries in creating photonic Dirac cones. Optics Express, 20(22), 25181. doi:10.1364/oe.20.025181

Zhang, X., & Liu, Z. (2008). Extremal Transmission and Beating Effect of Acoustic Waves in Two-Dimensional Sonic Crystals. Physical Review Letters, 101(26). doi:10.1103/physrevlett.101.264303

Zhong, W., & Zhang, X. (2011). Acoustic analog of monolayer graphene and edge states. Physics Letters A, 375(40), 3533-3536. doi:10.1016/j.physleta.2011.08.027

Torrent, D., & Sánchez-Dehesa, J. (2012). Acoustic Analogue of Graphene: Observation of Dirac Cones in Acoustic Surface Waves. Physical Review Letters, 108(17). doi:10.1103/physrevlett.108.174301

Zhang, X. (2008). ObservingZitterbewegungfor Photons near the Dirac Point of a Two-Dimensional Photonic Crystal. Physical Review Letters, 100(11). doi:10.1103/physrevlett.100.113903

Huang, X., Lai, Y., Hang, Z. H., Zheng, H., & Chan, C. T. (2011). Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials. Nature Materials, 10(8), 582-586. doi:10.1038/nmat3030

Zandbergen, S. R., & de Dood, M. J. A. (2010). Experimental Observation of Strong Edge Effects on the Pseudodiffusive Transport of Light in Photonic Graphene. Physical Review Letters, 104(4). doi:10.1103/physrevlett.104.043903

Sepkhanov, R. A., Bazaliy, Y. B., & Beenakker, C. W. J. (2007). Extremal transmission at the Dirac point of a photonic band structure. Physical Review A, 75(6). doi:10.1103/physreva.75.063813

Bittner, S., Dietz, B., Miski-Oglu, M., & Richter, A. (2012). Extremal transmission through a microwave photonic crystal and the observation of edge states in a rectangular Dirac billiard. Physical Review B, 85(6). doi:10.1103/physrevb.85.064301

Wang, Z., Chong, Y. D., Joannopoulos, J. D., & Soljačić, M. (2008). Reflection-Free One-Way Edge Modes in a Gyromagnetic Photonic Crystal. Physical Review Letters, 100(1). doi:10.1103/physrevlett.100.013905

Raghu, S., & Haldane, F. D. M. (2008). Analogs of quantum-Hall-effect edge states in photonic crystals. Physical Review A, 78(3). doi:10.1103/physreva.78.033834

Haldane, F. D. M., & Raghu, S. (2008). Possible Realization of Directional Optical Waveguides in Photonic Crystals with Broken Time-Reversal Symmetry. Physical Review Letters, 100(1). doi:10.1103/physrevlett.100.013904

Poo, Y., Wu, R., Lin, Z., Yang, Y., & Chan, C. T. (2011). Experimental Realization of Self-Guiding Unidirectional Electromagnetic Edge States. Physical Review Letters, 106(9). doi:10.1103/physrevlett.106.093903

Hsu, J.-C., & Wu, T.-T. (2006). Efficient formulation for band-structure calculations of two-dimensional phononic-crystal plates. Physical Review B, 74(14). doi:10.1103/physrevb.74.144303

Wu, T.-T., Huang, Z.-G., Tsai, T.-C., & Wu, T.-C. (2008). Evidence of complete band gap and resonances in a plate with periodic stubbed surface. Applied Physics Letters, 93(11), 111902. doi:10.1063/1.2970992

Oudich, M., Li, Y., Assouar, B. M., & Hou, Z. (2010). A sonic band gap based on the locally resonant phononic plates with stubs. New Journal of Physics, 12(8), 083049. doi:10.1088/1367-2630/12/8/083049

Xiao, Y., Wen, J., & Wen, X. (2012). Flexural wave band gaps in locally resonant thin plates with periodically attached spring–mass resonators. Journal of Physics D: Applied Physics, 45(19), 195401. doi:10.1088/0022-3727/45/19/195401

Tsung-Tsong Wu, Jin-Chen Hsu, & Jia-Hong Sun. (2011). Phononic plate waves. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 58(10), 2146-2161. doi:10.1109/tuffc.2011.2064

Farhat, M., Guenneau, S., & Enoch, S. (2010). High directivity and confinement of flexural waves through ultra-refraction in thin perforated plates. EPL (Europhysics Letters), 91(5), 54003. doi:10.1209/0295-5075/91/54003

Farhat, M., Guenneau, S., Enoch, S., Movchan, A. B., & Petursson, G. G. (2010). Focussing bending waves via negative refraction in perforated thin plates. Applied Physics Letters, 96(8), 081909. doi:10.1063/1.3327813

Bramhavar, S., Prada, C., Maznev, A. A., Every, A. G., Norris, T. B., & Murray, T. W. (2011). Negative refraction and focusing of elastic Lamb waves at an interface. Physical Review B, 83(1). doi:10.1103/physrevb.83.014106

Farhat, M., Guenneau, S., Enoch, S., & Movchan, A. B. (2009). Cloaking bending waves propagating in thin elastic plates. Physical Review B, 79(3). doi:10.1103/physrevb.79.033102

Farhat, M., Guenneau, S., & Enoch, S. (2009). Ultrabroadband Elastic Cloaking in Thin Plates. Physical Review Letters, 103(2). doi:10.1103/physrevlett.103.024301

Stenger, N., Wilhelm, M., & Wegener, M. (2012). Experiments on Elastic Cloaking in Thin Plates. Physical Review Letters, 108(1). doi:10.1103/physrevlett.108.014301

Nakada, K., Fujita, M., Dresselhaus, G., & Dresselhaus, M. S. (1996). Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Physical Review B, 54(24), 17954-17961. doi:10.1103/physrevb.54.17954

Foldy, L. L. (1945). The Multiple Scattering of Waves. I. General Theory of Isotropic Scattering by Randomly Distributed Scatterers. Physical Review, 67(3-4), 107-119. doi:10.1103/physrev.67.107

Martin, P. A. (2006). Multiple Scattering. doi:10.1017/cbo9780511735110

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem