- -

Nonlinear prediction based on independent component analysis mixture modelling

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Nonlinear prediction based on independent component analysis mixture modelling

Mostrar el registro completo del ítem

Safont Armero, G.; Salazar Afanador, A.; Vergara Domínguez, L. (2011). Nonlinear prediction based on independent component analysis mixture modelling. Lecture Notes in Computer Science. 6691(1):508-515. https://doi.org/10.1007/978-3-642-21498-1_64

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/58589

Ficheros en el ítem

Metadatos del ítem

Título: Nonlinear prediction based on independent component analysis mixture modelling
Autor: Safont Armero, Gonzalo Salazar Afanador, Addisson Vergara Domínguez, Luís
Entidad UPV: Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia
Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Fecha difusión:
Resumen:
[EN] This paper presents a new algorithm for nonlinear prediction based on independent component analysis mixture modelling (ICAMM). The data are considered from several mutually-exclusive classes which are generated by ...[+]
Palabras clave: ICA , ICAMM , Kriging , Nonlinear prediction , Wiener structure , Algorithms , Forecasting , Mixtures , Neural networks , Time series , Independent component analysis
Derechos de uso: Reserva de todos los derechos
Fuente:
Lecture Notes in Computer Science. (issn: 0302-9743 )
DOI: 10.1007/978-3-642-21498-1_64
Editorial:
Springer Verlag (Germany)
Versión del editor: http://dx.doi.org/10.1007/978-3-642-21498-1_64
Código del Proyecto:
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2010%2F040/
info:eu-repo/grantAgreement/MICINN//TEC2008-02975/ES/PROCESADOR NO-LINEAL DE MEZCLAS CON APLICACION EN DETECCION, CLASIFICACION, FILTRADO Y PREDICCION/
Agradecimientos:
This work has been supported by the Generalitat Valenciana under grant PROMETEO/2010/040, and the Spanish Administration and the FEDER Programme of the European Union under grant TEC 2008-02975/TEC.
Tipo: Artículo

References

Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. John Wiley & Sons, New York (2001)

Lee, T.W., Lewicki, M.S., Sejnowski, T.J.: ICA mixture models for unsupervised classification of non-gaussian classes and automatic context switching in blind signal separation. IEEE Trans. on Patt. Analysis and Mach. Intellig. 22(10), 1078–1089 (2000)

Malaroiu, S., Kiviluoto, K., Oja, E.: ICA Preprocessing for Time Series Prediction. In: 2nd International Workshop on ICA and BSS (ICA 2000), pp. 453–457 (2000) [+]
Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. John Wiley & Sons, New York (2001)

Lee, T.W., Lewicki, M.S., Sejnowski, T.J.: ICA mixture models for unsupervised classification of non-gaussian classes and automatic context switching in blind signal separation. IEEE Trans. on Patt. Analysis and Mach. Intellig. 22(10), 1078–1089 (2000)

Malaroiu, S., Kiviluoto, K., Oja, E.: ICA Preprocessing for Time Series Prediction. In: 2nd International Workshop on ICA and BSS (ICA 2000), pp. 453–457 (2000)

Pajunen, P.: Extensions of Linear Independent Component Analysis: Neural and Information-Theoretic Methods. Ph.D. Thesis, Helsinki University of Technology (1998)

Gorriz, J.M., Puntonet, C.G., Salmeron, G., Lang, E.W.: Time Series Prediction using ICA Algorithms. In: Proceedings of the 2nd IEEE International Workshop on Intelligent Data Acquisit. and Advanc. Comput. Systems: Technology and Applications, pp. 226–230 (2003)

Wang, C.Z., Tan, X.F., Chen, Y.W., Han, X.H., Ito, M., Nishikawa, I.: Independent component analysis-based prediction of O-Linked glycosylation sites in protein using multi-layered neural networks. In: IEEE 10th Internat. Conf. on Signal Processing, pp. 1–4 (2010)

Zhang, Y., Teng, Y., Zhang, Y.: Complex process quality prediction using modified kernel partial least squares. Chemical Engineering Science 65, 2153–2158 (2010)

Salazar, A., Vergara, L., Serrano, A., Igual, J.: A general procedure for learning mixtures of independent component analyzers. Pattern Recognition 43(1), 69–85 (2010)

Bersektas, D.: Nonlinear programming. Athena Scientific, Massachusetts (1999)

Cardoso, J.F., Souloumiac, A.: Blind beamforming for non gaussian signals. IEE Proceedings-F 140(6), 362–370 (1993)

Salazar, A., Vergara, L., Llinares, R.: Learning material defect patterns by separating mixtures of independent component analyzers from NDT sonic signals. Mechanical Systems and Signal processing 24(6), 1870–1886 (2010)

Salazar, A., Vergara, L.: ICA mixtures applied to ultrasonic nondestructive classification of archaeological ceramics. EURASIP Journal on Advances in Signal Processing, vol. 2010, p.11, Article ID 12520111 (2010), doi:10.1155/2010/125201

Salazar, A., Vergara, L., Miralles, R.: On including sequential dependence in ICA mixture models. Signal Processing 90(7), 2314–2318 (2010)

Raghavan, R.S.: A Model for Spatially Correlated Radar Clutter. IEEE Trans. on Aerospace and Electronic Systems 27, 268–275 (1991)

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem