Mostrar el registro sencillo del ítem
dc.contributor.author | Safont Armero, Gonzalo | es_ES |
dc.contributor.author | Salazar Afanador, Addisson | es_ES |
dc.contributor.author | Vergara Domínguez, Luís | es_ES |
dc.date.accessioned | 2015-12-05T11:54:29Z | |
dc.date.available | 2015-12-05T11:54:29Z | |
dc.date.issued | 2011 | |
dc.identifier.issn | 0302-9743 | |
dc.identifier.uri | http://hdl.handle.net/10251/58589 | |
dc.description.abstract | [EN] This paper presents a new algorithm for nonlinear prediction based on independent component analysis mixture modelling (ICAMM). The data are considered from several mutually-exclusive classes which are generated by different ICA models. This strategy allows linear local projections that can be adapted to partial segments of a data set while maintaining generalization (capability for nonlinear modelling) given the mixture of several ICAs. The resulting algorithm is a general purpose technique that could be applied to time series prediction, to recover missing data in images, etc. The performance of the proposed method is demonstrated by simulations in comparison with several classical linear and nonlinear methods. © 2011 Springer-Verlag. | es_ES |
dc.description.sponsorship | This work has been supported by the Generalitat Valenciana under grant PROMETEO/2010/040, and the Spanish Administration and the FEDER Programme of the European Union under grant TEC 2008-02975/TEC. | |
dc.language | Inglés | es_ES |
dc.publisher | Springer Verlag (Germany) | es_ES |
dc.relation.ispartof | Lecture Notes in Computer Science | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | ICA | es_ES |
dc.subject | ICAMM | es_ES |
dc.subject | Kriging | es_ES |
dc.subject | Nonlinear prediction | es_ES |
dc.subject | Wiener structure | es_ES |
dc.subject | Algorithms | es_ES |
dc.subject | Forecasting | es_ES |
dc.subject | Mixtures | es_ES |
dc.subject | Neural networks | es_ES |
dc.subject | Time series | es_ES |
dc.subject | Independent component analysis | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | Nonlinear prediction based on independent component analysis mixture modelling | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/978-3-642-21498-1_64 | |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2010%2F040/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TEC2008-02975/ES/PROCESADOR NO-LINEAL DE MEZCLAS CON APLICACION EN DETECCION, CLASIFICACION, FILTRADO Y PREDICCION/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.description.bibliographicCitation | Safont Armero, G.; Salazar Afanador, A.; Vergara Domínguez, L. (2011). Nonlinear prediction based on independent component analysis mixture modelling. Lecture Notes in Computer Science. 6691(1):508-515. https://doi.org/10.1007/978-3-642-21498-1_64 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1007/978-3-642-21498-1_64 | es_ES |
dc.description.upvformatpinicio | 508 | es_ES |
dc.description.upvformatpfin | 515 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 6691 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.senia | 211855 | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | |
dc.contributor.funder | Generalitat Valenciana | |
dc.description.references | Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. John Wiley & Sons, New York (2001) | es_ES |
dc.description.references | Lee, T.W., Lewicki, M.S., Sejnowski, T.J.: ICA mixture models for unsupervised classification of non-gaussian classes and automatic context switching in blind signal separation. IEEE Trans. on Patt. Analysis and Mach. Intellig. 22(10), 1078–1089 (2000) | es_ES |
dc.description.references | Malaroiu, S., Kiviluoto, K., Oja, E.: ICA Preprocessing for Time Series Prediction. In: 2nd International Workshop on ICA and BSS (ICA 2000), pp. 453–457 (2000) | es_ES |
dc.description.references | Pajunen, P.: Extensions of Linear Independent Component Analysis: Neural and Information-Theoretic Methods. Ph.D. Thesis, Helsinki University of Technology (1998) | es_ES |
dc.description.references | Gorriz, J.M., Puntonet, C.G., Salmeron, G., Lang, E.W.: Time Series Prediction using ICA Algorithms. In: Proceedings of the 2nd IEEE International Workshop on Intelligent Data Acquisit. and Advanc. Comput. Systems: Technology and Applications, pp. 226–230 (2003) | es_ES |
dc.description.references | Wang, C.Z., Tan, X.F., Chen, Y.W., Han, X.H., Ito, M., Nishikawa, I.: Independent component analysis-based prediction of O-Linked glycosylation sites in protein using multi-layered neural networks. In: IEEE 10th Internat. Conf. on Signal Processing, pp. 1–4 (2010) | es_ES |
dc.description.references | Zhang, Y., Teng, Y., Zhang, Y.: Complex process quality prediction using modified kernel partial least squares. Chemical Engineering Science 65, 2153–2158 (2010) | es_ES |
dc.description.references | Salazar, A., Vergara, L., Serrano, A., Igual, J.: A general procedure for learning mixtures of independent component analyzers. Pattern Recognition 43(1), 69–85 (2010) | es_ES |
dc.description.references | Bersektas, D.: Nonlinear programming. Athena Scientific, Massachusetts (1999) | es_ES |
dc.description.references | Cardoso, J.F., Souloumiac, A.: Blind beamforming for non gaussian signals. IEE Proceedings-F 140(6), 362–370 (1993) | es_ES |
dc.description.references | Salazar, A., Vergara, L., Llinares, R.: Learning material defect patterns by separating mixtures of independent component analyzers from NDT sonic signals. Mechanical Systems and Signal processing 24(6), 1870–1886 (2010) | es_ES |
dc.description.references | Salazar, A., Vergara, L.: ICA mixtures applied to ultrasonic nondestructive classification of archaeological ceramics. EURASIP Journal on Advances in Signal Processing, vol. 2010, p.11, Article ID 12520111 (2010), doi:10.1155/2010/125201 | es_ES |
dc.description.references | Salazar, A., Vergara, L., Miralles, R.: On including sequential dependence in ICA mixture models. Signal Processing 90(7), 2314–2318 (2010) | es_ES |
dc.description.references | Raghavan, R.S.: A Model for Spatially Correlated Radar Clutter. IEEE Trans. on Aerospace and Electronic Systems 27, 268–275 (1991) | es_ES |