- -

Acoustic analogue of graphene: observation of Dirac cones in acoustic surface waves

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Acoustic analogue of graphene: observation of Dirac cones in acoustic surface waves

Show full item record

Torrent Martí, D.; Sánchez-Dehesa Moreno-Cid, J. (2012). Acoustic analogue of graphene: observation of Dirac cones in acoustic surface waves. Physical Review Letters. 108(17). https://doi.org/10.1103/PhysRevLett.108.174301

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/58808

Files in this item

Item Metadata

Title: Acoustic analogue of graphene: observation of Dirac cones in acoustic surface waves
Author: Torrent Martí, Daniel Sánchez-Dehesa Moreno-Cid, José
UPV Unit: Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat
Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Issued date:
Abstract:
We demonstrate the presence of Dirac cones in the dispersion relation of acoustic waves propagating on the surface of a plate of methyl methacrylate containing a honeycomb lattice of cylindrical boreholes. This structure ...[+]
Subjects: Acoustic surface waves , Analytical expressions , Carbon atoms , Cylindrical cavities , Dispersion relations , Electronic waves , Honeycomb lattices , Methyl methacrylates , Acoustics , Elastic waves , Esters , Surface waves , Graphene
Copyrigths: Cerrado
Source:
Physical Review Letters. (issn: 0031-9007 ) (eissn: 1079-7114 )
DOI: 10.1103/PhysRevLett.108.174301
Publisher:
American Physical Society
Publisher version: http://dx.doi.org/10.1103/PhysRevLett.108.174301
Project ID:
info:eu-repo/grantAgreement/MICINN//TEC2010-19751/ES/NUEVOS DISPOSITIVOS BASADOS EN METAMATERIALES ELECTROMAGNETICOS Y ACUSTICOS/
info:eu-repo/grantAgreement/MICINN//CSD2008-00066/ES/Ingeniería de Metamateriales/
Thanks:
Work supported by the Spanish Ministry of Science and Innovation (MICINN) under Contracts No. TEC2010-19751 and No. CSD2008-66 (CONSOLIDER program). Daniel Torrent acknowledges support from the program "Campus de Excelencia ...[+]
Type: Artículo

References

Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Katsnelson, M. I., Grigorieva, I. V., … Firsov, A. A. (2005). Two-dimensional gas of massless Dirac fermions in graphene. Nature, 438(7065), 197-200. doi:10.1038/nature04233

Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S., & Geim, A. K. (2009). The electronic properties of graphene. Reviews of Modern Physics, 81(1), 109-162. doi:10.1103/revmodphys.81.109

Beenakker, C. W. J. (2008). Colloquium: Andreev reflection and Klein tunneling in graphene. Reviews of Modern Physics, 80(4), 1337-1354. doi:10.1103/revmodphys.80.1337 [+]
Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Katsnelson, M. I., Grigorieva, I. V., … Firsov, A. A. (2005). Two-dimensional gas of massless Dirac fermions in graphene. Nature, 438(7065), 197-200. doi:10.1038/nature04233

Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S., & Geim, A. K. (2009). The electronic properties of graphene. Reviews of Modern Physics, 81(1), 109-162. doi:10.1103/revmodphys.81.109

Beenakker, C. W. J. (2008). Colloquium: Andreev reflection and Klein tunneling in graphene. Reviews of Modern Physics, 80(4), 1337-1354. doi:10.1103/revmodphys.80.1337

Katsnelson, M. I. (2006). Zitterbewegung, chirality, and minimal conductivity in graphene. The European Physical Journal B, 51(2), 157-160. doi:10.1140/epjb/e2006-00203-1

Cheianov, V. V., Fal’ko, V., & Altshuler, B. L. (2007). The Focusing of Electron Flow and a Veselago Lens in Graphene p-n Junctions. Science, 315(5816), 1252-1255. doi:10.1126/science.1138020

Sepkhanov, R. A., Bazaliy, Y. B., & Beenakker, C. W. J. (2007). Extremal transmission at the Dirac point of a photonic band structure. Physical Review A, 75(6). doi:10.1103/physreva.75.063813

Zhang, X. (2008). ObservingZitterbewegungfor Photons near the Dirac Point of a Two-Dimensional Photonic Crystal. Physical Review Letters, 100(11). doi:10.1103/physrevlett.100.113903

Wang, Z., Chong, Y. D., Joannopoulos, J. D., & Soljačić, M. (2008). Reflection-Free One-Way Edge Modes in a Gyromagnetic Photonic Crystal. Physical Review Letters, 100(1). doi:10.1103/physrevlett.100.013905

Ochiai, T., & Onoda, M. (2009). Photonic analog of graphene model and its extension: Dirac cone, symmetry, and edge states. Physical Review B, 80(15). doi:10.1103/physrevb.80.155103

Ishizaki, K., & Noda, S. (2009). Manipulation of photons at the surface of three-dimensional photonic crystals. Nature, 460(7253), 367-370. doi:10.1038/nature08190

Han, D., Lai, Y., Zi, J., Zhang, Z.-Q., & Chan, C. T. (2009). Dirac Spectra and Edge States in Honeycomb Plasmonic Lattices. Physical Review Letters, 102(12). doi:10.1103/physrevlett.102.123904

Zhong, W., & Zhang, X. (2011). Dirac-cone photonic surface states in three-dimensional photonic crystal slab. Optics Express, 19(15), 13738. doi:10.1364/oe.19.013738

Huang, X., Lai, Y., Hang, Z. H., Zheng, H., & Chan, C. T. (2011). Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials. Nature Materials, 10(8), 582-586. doi:10.1038/nmat3030

Haldane, F. D. M., & Raghu, S. (2008). Possible Realization of Directional Optical Waveguides in Photonic Crystals with Broken Time-Reversal Symmetry. Physical Review Letters, 100(1). doi:10.1103/physrevlett.100.013904

Raghu, S., & Haldane, F. D. M. (2008). Analogs of quantum-Hall-effect edge states in photonic crystals. Physical Review A, 78(3). doi:10.1103/physreva.78.033834

Shen, M., Ruan, L.-X., & Chen, X. (2010). Guided modes near the Dirac point in negative-zero-positive index metamaterial waveguide. Optics Express, 18(12), 12779. doi:10.1364/oe.18.012779

Zhang, X., & Liu, Z. (2008). Extremal Transmission and Beating Effect of Acoustic Waves in Two-Dimensional Sonic Crystals. Physical Review Letters, 101(26). doi:10.1103/physrevlett.101.264303

Zhong, W., & Zhang, X. (2011). Acoustic analog of monolayer graphene and edge states. Physics Letters A, 375(40), 3533-3536. doi:10.1016/j.physleta.2011.08.027

Kelders, L., Lauriks, W., & Allard, J. F. (1998). Surface waves above thin porous layers saturated by air at ultrasonic frequencies. The Journal of the Acoustical Society of America, 104(2), 882-889. doi:10.1121/1.423333

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record