Mostrar el registro sencillo del ítem
dc.contributor.author | Torrent Martí, Daniel | es_ES |
dc.contributor.author | Sánchez-Dehesa Moreno-Cid, José | es_ES |
dc.date.accessioned | 2015-12-15T08:41:04Z | |
dc.date.available | 2015-12-15T08:41:04Z | |
dc.date.issued | 2012-04-27 | |
dc.identifier.issn | 0031-9007 | |
dc.identifier.uri | http://hdl.handle.net/10251/58808 | |
dc.description.abstract | We demonstrate the presence of Dirac cones in the dispersion relation of acoustic waves propagating on the surface of a plate of methyl methacrylate containing a honeycomb lattice of cylindrical boreholes. This structure represents the acoustic analogue of graphene, the cylindrical cavities playing the role of carbon atoms while acoustic surface waves are the equivalent of electronic waves in graphene. Analytical expressions for the Dirac frequency and Dirac velocity in acoustics are given as a function of the radius and depth of boreholes. These parameters have been experimentally determined for a constructed structure and the data are in fairly good agreement with the predicted values. © 2012 American Physical Society. | es_ES |
dc.description.sponsorship | Work supported by the Spanish Ministry of Science and Innovation (MICINN) under Contracts No. TEC2010-19751 and No. CSD2008-66 (CONSOLIDER program). Daniel Torrent acknowledges support from the program "Campus de Excelencia Internacional 2010 UPV." Both authors thank Didier Mayou for useful discussions. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | American Physical Society | es_ES |
dc.relation.ispartof | Physical Review Letters | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Acoustic surface waves | es_ES |
dc.subject | Analytical expressions | es_ES |
dc.subject | Carbon atoms | es_ES |
dc.subject | Cylindrical cavities | es_ES |
dc.subject | Dispersion relations | es_ES |
dc.subject | Electronic waves | es_ES |
dc.subject | Honeycomb lattices | es_ES |
dc.subject | Methyl methacrylates | es_ES |
dc.subject | Acoustics | es_ES |
dc.subject | Elastic waves | es_ES |
dc.subject | Esters | es_ES |
dc.subject | Surface waves | es_ES |
dc.subject | Graphene | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Acoustic analogue of graphene: observation of Dirac cones in acoustic surface waves | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1103/PhysRevLett.108.174301 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TEC2010-19751/ES/NUEVOS DISPOSITIVOS BASADOS EN METAMATERIALES ELECTROMAGNETICOS Y ACUSTICOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CSD2008-00066/ES/Ingeniería de Metamateriales/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.description.bibliographicCitation | Torrent Martí, D.; Sánchez-Dehesa Moreno-Cid, J. (2012). Acoustic analogue of graphene: observation of Dirac cones in acoustic surface waves. Physical Review Letters. 108(17). https://doi.org/10.1103/PhysRevLett.108.174301 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1103/PhysRevLett.108.174301 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 108 | es_ES |
dc.description.issue | 17 | es_ES |
dc.relation.senia | 227821 | es_ES |
dc.identifier.eissn | 1079-7114 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Katsnelson, M. I., Grigorieva, I. V., … Firsov, A. A. (2005). Two-dimensional gas of massless Dirac fermions in graphene. Nature, 438(7065), 197-200. doi:10.1038/nature04233 | es_ES |
dc.description.references | Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S., & Geim, A. K. (2009). The electronic properties of graphene. Reviews of Modern Physics, 81(1), 109-162. doi:10.1103/revmodphys.81.109 | es_ES |
dc.description.references | Beenakker, C. W. J. (2008). Colloquium: Andreev reflection and Klein tunneling in graphene. Reviews of Modern Physics, 80(4), 1337-1354. doi:10.1103/revmodphys.80.1337 | es_ES |
dc.description.references | Katsnelson, M. I. (2006). Zitterbewegung, chirality, and minimal conductivity in graphene. The European Physical Journal B, 51(2), 157-160. doi:10.1140/epjb/e2006-00203-1 | es_ES |
dc.description.references | Cheianov, V. V., Fal’ko, V., & Altshuler, B. L. (2007). The Focusing of Electron Flow and a Veselago Lens in Graphene p-n Junctions. Science, 315(5816), 1252-1255. doi:10.1126/science.1138020 | es_ES |
dc.description.references | Sepkhanov, R. A., Bazaliy, Y. B., & Beenakker, C. W. J. (2007). Extremal transmission at the Dirac point of a photonic band structure. Physical Review A, 75(6). doi:10.1103/physreva.75.063813 | es_ES |
dc.description.references | Zhang, X. (2008). ObservingZitterbewegungfor Photons near the Dirac Point of a Two-Dimensional Photonic Crystal. Physical Review Letters, 100(11). doi:10.1103/physrevlett.100.113903 | es_ES |
dc.description.references | Wang, Z., Chong, Y. D., Joannopoulos, J. D., & Soljačić, M. (2008). Reflection-Free One-Way Edge Modes in a Gyromagnetic Photonic Crystal. Physical Review Letters, 100(1). doi:10.1103/physrevlett.100.013905 | es_ES |
dc.description.references | Ochiai, T., & Onoda, M. (2009). Photonic analog of graphene model and its extension: Dirac cone, symmetry, and edge states. Physical Review B, 80(15). doi:10.1103/physrevb.80.155103 | es_ES |
dc.description.references | Ishizaki, K., & Noda, S. (2009). Manipulation of photons at the surface of three-dimensional photonic crystals. Nature, 460(7253), 367-370. doi:10.1038/nature08190 | es_ES |
dc.description.references | Han, D., Lai, Y., Zi, J., Zhang, Z.-Q., & Chan, C. T. (2009). Dirac Spectra and Edge States in Honeycomb Plasmonic Lattices. Physical Review Letters, 102(12). doi:10.1103/physrevlett.102.123904 | es_ES |
dc.description.references | Zhong, W., & Zhang, X. (2011). Dirac-cone photonic surface states in three-dimensional photonic crystal slab. Optics Express, 19(15), 13738. doi:10.1364/oe.19.013738 | es_ES |
dc.description.references | Huang, X., Lai, Y., Hang, Z. H., Zheng, H., & Chan, C. T. (2011). Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials. Nature Materials, 10(8), 582-586. doi:10.1038/nmat3030 | es_ES |
dc.description.references | Haldane, F. D. M., & Raghu, S. (2008). Possible Realization of Directional Optical Waveguides in Photonic Crystals with Broken Time-Reversal Symmetry. Physical Review Letters, 100(1). doi:10.1103/physrevlett.100.013904 | es_ES |
dc.description.references | Raghu, S., & Haldane, F. D. M. (2008). Analogs of quantum-Hall-effect edge states in photonic crystals. Physical Review A, 78(3). doi:10.1103/physreva.78.033834 | es_ES |
dc.description.references | Shen, M., Ruan, L.-X., & Chen, X. (2010). Guided modes near the Dirac point in negative-zero-positive index metamaterial waveguide. Optics Express, 18(12), 12779. doi:10.1364/oe.18.012779 | es_ES |
dc.description.references | Zhang, X., & Liu, Z. (2008). Extremal Transmission and Beating Effect of Acoustic Waves in Two-Dimensional Sonic Crystals. Physical Review Letters, 101(26). doi:10.1103/physrevlett.101.264303 | es_ES |
dc.description.references | Zhong, W., & Zhang, X. (2011). Acoustic analog of monolayer graphene and edge states. Physics Letters A, 375(40), 3533-3536. doi:10.1016/j.physleta.2011.08.027 | es_ES |
dc.description.references | Kelders, L., Lauriks, W., & Allard, J. F. (1998). Surface waves above thin porous layers saturated by air at ultrasonic frequencies. The Journal of the Acoustical Society of America, 104(2), 882-889. doi:10.1121/1.423333 | es_ES |