- -

Three-dimensional axisymmetric cloak based on the cancellation of acoustic scattering from a sphere

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Three-dimensional axisymmetric cloak based on the cancellation of acoustic scattering from a sphere

Mostrar el registro completo del ítem

Sanchis Martínez, L.; García Chocano, VM.; Llopis Pontiveros, R.; Climente Alarcón, A.; Martínez Pastor, J.; Cervera Moreno, FS.; Sánchez-Dehesa Moreno-Cid, J. (2013). Three-dimensional axisymmetric cloak based on the cancellation of acoustic scattering from a sphere. Physical Review Letters. 110(12). https://doi.org/10.1103/PhysRevLett.110.124301

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/58809

Ficheros en el ítem

Metadatos del ítem

Título: Three-dimensional axisymmetric cloak based on the cancellation of acoustic scattering from a sphere
Autor: Sanchis Martínez, Lorenzo García Chocano, Víctor Manuel Llopis Pontiveros, Rafael Climente Alarcón, Alfonso Martínez Pastor, J. Cervera Moreno, Francisco Salvador Sánchez-Dehesa Moreno-Cid, José
Entidad UPV: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Fecha difusión:
Resumen:
This Letter presents the design, fabrication, and experimental characterization of a directional threedimensional acoustic cloak for airborne sound. The cloak consists of 60 concentric acoustically rigid tori surrounding ...[+]
Palabras clave: Acoustic cloaks , Radiation , Design
Derechos de uso: Cerrado
Fuente:
Physical Review Letters. (issn: 0031-9007 ) (eissn: 1079-7114 )
DOI: 10.1103/PhysRevLett.110.124301
Editorial:
American Physical Society
Versión del editor: http://dx.doi.org/10.1103/PhysRevLett.110.124301
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//TEC2010-19751/ES/NUEVOS DISPOSITIVOS BASADOS EN METAMATERIALES ELECTROMAGNETICOS Y ACUSTICOS/
info:eu-repo/grantAgreement/MICINN//TEC2011-29120-C05-01/ES/PUNTOS CUANTICOS SEMICONDUCTORES COMO CLAVE PARA FUTURAS TECNOLOGIAS: DE LA NANOFOTONICA A LA NANOPLASMONICA/
info:eu-repo/grantAgreement/MICINN//CSD2008-00066/ES/Ingeniería de Metamateriales/
Agradecimientos:
This work is partially supported by the Spanish Ministerio de Economia y Competitividad under Contracts No. TEC2010-19751, No. TEC2011-29120-C05-01, and No. CSD2008-00066 (CONSOLIDER Program), and by the U.S. Office of ...[+]
Tipo: Artículo

References

Milton, G. W., Briane, M., & Willis, J. R. (2006). On cloaking for elasticity and physical equations with a transformation invariant form. New Journal of Physics, 8(10), 248-248. doi:10.1088/1367-2630/8/10/248

Cummer, S. A., & Schurig, D. (2007). One path to acoustic cloaking. New Journal of Physics, 9(3), 45-45. doi:10.1088/1367-2630/9/3/045

Norris, A. N. (2009). Acoustic metafluids. The Journal of the Acoustical Society of America, 125(2), 839-849. doi:10.1121/1.3050288 [+]
Milton, G. W., Briane, M., & Willis, J. R. (2006). On cloaking for elasticity and physical equations with a transformation invariant form. New Journal of Physics, 8(10), 248-248. doi:10.1088/1367-2630/8/10/248

Cummer, S. A., & Schurig, D. (2007). One path to acoustic cloaking. New Journal of Physics, 9(3), 45-45. doi:10.1088/1367-2630/9/3/045

Norris, A. N. (2009). Acoustic metafluids. The Journal of the Acoustical Society of America, 125(2), 839-849. doi:10.1121/1.3050288

Chen, H., & Chan, C. T. (2007). Acoustic cloaking in three dimensions using acoustic metamaterials. Applied Physics Letters, 91(18), 183518. doi:10.1063/1.2803315

Cummer, S. A., Popa, B.-I., Schurig, D., Smith, D. R., Pendry, J., Rahm, M., & Starr, A. (2008). Scattering Theory Derivation of a 3D Acoustic Cloaking Shell. Physical Review Letters, 100(2). doi:10.1103/physrevlett.100.024301

Guild, M. D., Alù, A., & Haberman, M. R. (2011). Cancellation of acoustic scattering from an elastic sphere. The Journal of the Acoustical Society of America, 129(3), 1355-1365. doi:10.1121/1.3552876

Martin, T. P., & Orris, G. J. (2012). Hybrid inertial method for broadband scattering reduction. Applied Physics Letters, 100(3), 033506. doi:10.1063/1.3678633

Torrent, D., & Sánchez-Dehesa, J. (2008). Acoustic cloaking in two dimensions: a feasible approach. New Journal of Physics, 10(6), 063015. doi:10.1088/1367-2630/10/6/063015

Cheng, Y., Yang, F., Xu, J. Y., & Liu, X. J. (2008). A multilayer structured acoustic cloak with homogeneous isotropic materials. Applied Physics Letters, 92(15), 151913. doi:10.1063/1.2903500

Zhang, S., Xia, C., & Fang, N. (2011). Broadband Acoustic Cloak for Ultrasound Waves. Physical Review Letters, 106(2). doi:10.1103/physrevlett.106.024301

Popa, B.-I., Zigoneanu, L., & Cummer, S. A. (2011). Experimental Acoustic Ground Cloak in Air. Physical Review Letters, 106(25). doi:10.1103/physrevlett.106.253901

Farhat, M., Guenneau, S., & Enoch, S. (2009). Ultrabroadband Elastic Cloaking in Thin Plates. Physical Review Letters, 103(2). doi:10.1103/physrevlett.103.024301

Stenger, N., Wilhelm, M., & Wegener, M. (2012). Experiments on Elastic Cloaking in Thin Plates. Physical Review Letters, 108(1). doi:10.1103/physrevlett.108.014301

Sanchis, L., Håkansson, A., López-Zanón, D., Bravo-Abad, J., & Sánchez-Dehesa, J. (2004). Integrated optical devices design by genetic algorithm. Applied Physics Letters, 84(22), 4460-4462. doi:10.1063/1.1738931

Preble, S., Lipson, M., & Lipson, H. (2005). Two-dimensional photonic crystals designed by evolutionary algorithms. Applied Physics Letters, 86(6), 061111. doi:10.1063/1.1862783

Håkansson, A., Miyazaki, H. T., & Sánchez-Dehesa, J. (2006). Inverse Design for Full Control of Spontaneous Emission Using Light Emitting Scattering Optical Elements. Physical Review Letters, 96(15). doi:10.1103/physrevlett.96.153902

Sanchis, L., Cryan, M. J., Pozo, J., Craddock, I. J., & Rarity, J. G. (2007). Ultrahigh Purcell factor in photonic crystal slab microcavities. Physical Review B, 76(4). doi:10.1103/physrevb.76.045118

Andkjær, J., & Sigmund, O. (2011). Topology optimized low-contrast all-dielectric optical cloak. Applied Physics Letters, 98(2), 021112. doi:10.1063/1.3540687

Håkansson, A., Cervera, F., & Sánchez-Dehesa, J. (2005). Sound focusing by flat acoustic lenses without negative refraction. Applied Physics Letters, 86(5), 054102. doi:10.1063/1.1852719

García-Chocano, V. M., Sanchis, L., Díaz-Rubio, A., Martínez-Pastor, J., Cervera, F., Llopis-Pontiveros, R., & Sánchez-Dehesa, J. (2011). Acoustic cloak for airborne sound by inverse design. Applied Physics Letters, 99(7), 074102. doi:10.1063/1.3623761

Håkansson, A. (2007). Cloaking of objects from electromagnetic fields by inverse design of scattering optical elements. Optics Express, 15(7), 4328. doi:10.1364/oe.15.004328

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Simulated Annealing. Science, 220(4598), 671-680. doi:10.1126/science.220.4598.671

Seybert, A. F., Soenarko, B., Rizzo, F. J., & Shippy, D. J. (1986). A special integral equation formulation for acoustic radiation and scattering for axisymmetric bodies and boundary conditions. The Journal of the Acoustical Society of America, 80(4), 1241-1247. doi:10.1121/1.393817

Karageorghis, A., & Fairweather, G. (1998). The method of fundamental solutions for axisymmetric acoustic scattering and radiation problems. The Journal of the Acoustical Society of America, 104(6), 3212-3218. doi:10.1121/1.423961

Milton, G. W., & Nicorovici, N.-A. P. (2006). On the cloaking effects associated with anomalous localized resonance. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 462(2074), 3027-3059. doi:10.1098/rspa.2006.1715

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem