- -

Three-dimensional axisymmetric cloak based on the cancellation of acoustic scattering from a sphere

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Three-dimensional axisymmetric cloak based on the cancellation of acoustic scattering from a sphere

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sanchis Martínez, Lorenzo es_ES
dc.contributor.author García Chocano, Víctor Manuel es_ES
dc.contributor.author Llopis Pontiveros, Rafael es_ES
dc.contributor.author Climente Alarcón, Alfonso es_ES
dc.contributor.author Martínez Pastor, J. es_ES
dc.contributor.author Cervera Moreno, Francisco Salvador es_ES
dc.contributor.author Sánchez-Dehesa Moreno-Cid, José es_ES
dc.date.accessioned 2015-12-15T08:41:26Z
dc.date.available 2015-12-15T08:41:26Z
dc.date.issued 2013-03-20
dc.identifier.issn 0031-9007
dc.identifier.uri http://hdl.handle.net/10251/58809
dc.description.abstract This Letter presents the design, fabrication, and experimental characterization of a directional threedimensional acoustic cloak for airborne sound. The cloak consists of 60 concentric acoustically rigid tori surrounding the cloaked object, a sphere of radius 4 cm. The major radii and positions of the tori along the symmetry axis are determined using the condition of complete cancellation of the acoustic field scattered from the sphere. They are obtained through an optimization technique that combines genetic algorithm and simulated annealing. The scattering cross section of the sphere with the cloak, which is the magnitude that is minimized, is calculated using the method of fundamental solutions. The low-loss fabricated cloak shows a reduction of the 90% of the sphere scattering cross section at the frequency of 8.55 kHz. es_ES
dc.description.sponsorship This work is partially supported by the Spanish Ministerio de Economia y Competitividad under Contracts No. TEC2010-19751, No. TEC2011-29120-C05-01, and No. CSD2008-00066 (CONSOLIDER Program), and by the U.S. Office of Naval Research. The authors acknowledge the "Centro de Tecnologias Fisicas'' at the UPV for technical help during data acquisition. We also acknowledge the computing facilities provided by the Universidad de Valencia. en_EN
dc.language Inglés es_ES
dc.publisher American Physical Society es_ES
dc.relation.ispartof Physical Review Letters es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Acoustic cloaks es_ES
dc.subject Radiation es_ES
dc.subject Design es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Three-dimensional axisymmetric cloak based on the cancellation of acoustic scattering from a sphere es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1103/PhysRevLett.110.124301
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TEC2010-19751/ES/NUEVOS DISPOSITIVOS BASADOS EN METAMATERIALES ELECTROMAGNETICOS Y ACUSTICOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TEC2011-29120-C05-01/ES/PUNTOS CUANTICOS SEMICONDUCTORES COMO CLAVE PARA FUTURAS TECNOLOGIAS: DE LA NANOFOTONICA A LA NANOPLASMONICA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CSD2008-00066/ES/Ingeniería de Metamateriales/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Sanchis Martínez, L.; García Chocano, VM.; Llopis Pontiveros, R.; Climente Alarcón, A.; Martínez Pastor, J.; Cervera Moreno, FS.; Sánchez-Dehesa Moreno-Cid, J. (2013). Three-dimensional axisymmetric cloak based on the cancellation of acoustic scattering from a sphere. Physical Review Letters. 110(12). https://doi.org/10.1103/PhysRevLett.110.124301 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1103/PhysRevLett.110.124301 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 110 es_ES
dc.description.issue 12 es_ES
dc.relation.senia 243086 es_ES
dc.identifier.eissn 1079-7114
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Office of Naval Research es_ES
dc.description.references Milton, G. W., Briane, M., & Willis, J. R. (2006). On cloaking for elasticity and physical equations with a transformation invariant form. New Journal of Physics, 8(10), 248-248. doi:10.1088/1367-2630/8/10/248 es_ES
dc.description.references Cummer, S. A., & Schurig, D. (2007). One path to acoustic cloaking. New Journal of Physics, 9(3), 45-45. doi:10.1088/1367-2630/9/3/045 es_ES
dc.description.references Norris, A. N. (2009). Acoustic metafluids. The Journal of the Acoustical Society of America, 125(2), 839-849. doi:10.1121/1.3050288 es_ES
dc.description.references Chen, H., & Chan, C. T. (2007). Acoustic cloaking in three dimensions using acoustic metamaterials. Applied Physics Letters, 91(18), 183518. doi:10.1063/1.2803315 es_ES
dc.description.references Cummer, S. A., Popa, B.-I., Schurig, D., Smith, D. R., Pendry, J., Rahm, M., & Starr, A. (2008). Scattering Theory Derivation of a 3D Acoustic Cloaking Shell. Physical Review Letters, 100(2). doi:10.1103/physrevlett.100.024301 es_ES
dc.description.references Guild, M. D., Alù, A., & Haberman, M. R. (2011). Cancellation of acoustic scattering from an elastic sphere. The Journal of the Acoustical Society of America, 129(3), 1355-1365. doi:10.1121/1.3552876 es_ES
dc.description.references Martin, T. P., & Orris, G. J. (2012). Hybrid inertial method for broadband scattering reduction. Applied Physics Letters, 100(3), 033506. doi:10.1063/1.3678633 es_ES
dc.description.references Torrent, D., & Sánchez-Dehesa, J. (2008). Acoustic cloaking in two dimensions: a feasible approach. New Journal of Physics, 10(6), 063015. doi:10.1088/1367-2630/10/6/063015 es_ES
dc.description.references Cheng, Y., Yang, F., Xu, J. Y., & Liu, X. J. (2008). A multilayer structured acoustic cloak with homogeneous isotropic materials. Applied Physics Letters, 92(15), 151913. doi:10.1063/1.2903500 es_ES
dc.description.references Zhang, S., Xia, C., & Fang, N. (2011). Broadband Acoustic Cloak for Ultrasound Waves. Physical Review Letters, 106(2). doi:10.1103/physrevlett.106.024301 es_ES
dc.description.references Popa, B.-I., Zigoneanu, L., & Cummer, S. A. (2011). Experimental Acoustic Ground Cloak in Air. Physical Review Letters, 106(25). doi:10.1103/physrevlett.106.253901 es_ES
dc.description.references Farhat, M., Guenneau, S., & Enoch, S. (2009). Ultrabroadband Elastic Cloaking in Thin Plates. Physical Review Letters, 103(2). doi:10.1103/physrevlett.103.024301 es_ES
dc.description.references Stenger, N., Wilhelm, M., & Wegener, M. (2012). Experiments on Elastic Cloaking in Thin Plates. Physical Review Letters, 108(1). doi:10.1103/physrevlett.108.014301 es_ES
dc.description.references Sanchis, L., Håkansson, A., López-Zanón, D., Bravo-Abad, J., & Sánchez-Dehesa, J. (2004). Integrated optical devices design by genetic algorithm. Applied Physics Letters, 84(22), 4460-4462. doi:10.1063/1.1738931 es_ES
dc.description.references Preble, S., Lipson, M., & Lipson, H. (2005). Two-dimensional photonic crystals designed by evolutionary algorithms. Applied Physics Letters, 86(6), 061111. doi:10.1063/1.1862783 es_ES
dc.description.references Håkansson, A., Miyazaki, H. T., & Sánchez-Dehesa, J. (2006). Inverse Design for Full Control of Spontaneous Emission Using Light Emitting Scattering Optical Elements. Physical Review Letters, 96(15). doi:10.1103/physrevlett.96.153902 es_ES
dc.description.references Sanchis, L., Cryan, M. J., Pozo, J., Craddock, I. J., & Rarity, J. G. (2007). Ultrahigh Purcell factor in photonic crystal slab microcavities. Physical Review B, 76(4). doi:10.1103/physrevb.76.045118 es_ES
dc.description.references Andkjær, J., & Sigmund, O. (2011). Topology optimized low-contrast all-dielectric optical cloak. Applied Physics Letters, 98(2), 021112. doi:10.1063/1.3540687 es_ES
dc.description.references Håkansson, A., Cervera, F., & Sánchez-Dehesa, J. (2005). Sound focusing by flat acoustic lenses without negative refraction. Applied Physics Letters, 86(5), 054102. doi:10.1063/1.1852719 es_ES
dc.description.references García-Chocano, V. M., Sanchis, L., Díaz-Rubio, A., Martínez-Pastor, J., Cervera, F., Llopis-Pontiveros, R., & Sánchez-Dehesa, J. (2011). Acoustic cloak for airborne sound by inverse design. Applied Physics Letters, 99(7), 074102. doi:10.1063/1.3623761 es_ES
dc.description.references Håkansson, A. (2007). Cloaking of objects from electromagnetic fields by inverse design of scattering optical elements. Optics Express, 15(7), 4328. doi:10.1364/oe.15.004328 es_ES
dc.description.references Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Simulated Annealing. Science, 220(4598), 671-680. doi:10.1126/science.220.4598.671 es_ES
dc.description.references Seybert, A. F., Soenarko, B., Rizzo, F. J., & Shippy, D. J. (1986). A special integral equation formulation for acoustic radiation and scattering for axisymmetric bodies and boundary conditions. The Journal of the Acoustical Society of America, 80(4), 1241-1247. doi:10.1121/1.393817 es_ES
dc.description.references Karageorghis, A., & Fairweather, G. (1998). The method of fundamental solutions for axisymmetric acoustic scattering and radiation problems. The Journal of the Acoustical Society of America, 104(6), 3212-3218. doi:10.1121/1.423961 es_ES
dc.description.references Milton, G. W., & Nicorovici, N.-A. P. (2006). On the cloaking effects associated with anomalous localized resonance. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 462(2074), 3027-3059. doi:10.1098/rspa.2006.1715 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem