Mostrar el registro sencillo del ítem
dc.contributor.author | Sanchis Martínez, Lorenzo | es_ES |
dc.contributor.author | García Chocano, Víctor Manuel | es_ES |
dc.contributor.author | Llopis Pontiveros, Rafael | es_ES |
dc.contributor.author | Climente Alarcón, Alfonso | es_ES |
dc.contributor.author | Martínez Pastor, J. | es_ES |
dc.contributor.author | Cervera Moreno, Francisco Salvador | es_ES |
dc.contributor.author | Sánchez-Dehesa Moreno-Cid, José | es_ES |
dc.date.accessioned | 2015-12-15T08:41:26Z | |
dc.date.available | 2015-12-15T08:41:26Z | |
dc.date.issued | 2013-03-20 | |
dc.identifier.issn | 0031-9007 | |
dc.identifier.uri | http://hdl.handle.net/10251/58809 | |
dc.description.abstract | This Letter presents the design, fabrication, and experimental characterization of a directional threedimensional acoustic cloak for airborne sound. The cloak consists of 60 concentric acoustically rigid tori surrounding the cloaked object, a sphere of radius 4 cm. The major radii and positions of the tori along the symmetry axis are determined using the condition of complete cancellation of the acoustic field scattered from the sphere. They are obtained through an optimization technique that combines genetic algorithm and simulated annealing. The scattering cross section of the sphere with the cloak, which is the magnitude that is minimized, is calculated using the method of fundamental solutions. The low-loss fabricated cloak shows a reduction of the 90% of the sphere scattering cross section at the frequency of 8.55 kHz. | es_ES |
dc.description.sponsorship | This work is partially supported by the Spanish Ministerio de Economia y Competitividad under Contracts No. TEC2010-19751, No. TEC2011-29120-C05-01, and No. CSD2008-00066 (CONSOLIDER Program), and by the U.S. Office of Naval Research. The authors acknowledge the "Centro de Tecnologias Fisicas'' at the UPV for technical help during data acquisition. We also acknowledge the computing facilities provided by the Universidad de Valencia. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | American Physical Society | es_ES |
dc.relation.ispartof | Physical Review Letters | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Acoustic cloaks | es_ES |
dc.subject | Radiation | es_ES |
dc.subject | Design | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Three-dimensional axisymmetric cloak based on the cancellation of acoustic scattering from a sphere | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1103/PhysRevLett.110.124301 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TEC2010-19751/ES/NUEVOS DISPOSITIVOS BASADOS EN METAMATERIALES ELECTROMAGNETICOS Y ACUSTICOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TEC2011-29120-C05-01/ES/PUNTOS CUANTICOS SEMICONDUCTORES COMO CLAVE PARA FUTURAS TECNOLOGIAS: DE LA NANOFOTONICA A LA NANOPLASMONICA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CSD2008-00066/ES/Ingeniería de Metamateriales/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.description.bibliographicCitation | Sanchis Martínez, L.; García Chocano, VM.; Llopis Pontiveros, R.; Climente Alarcón, A.; Martínez Pastor, J.; Cervera Moreno, FS.; Sánchez-Dehesa Moreno-Cid, J. (2013). Three-dimensional axisymmetric cloak based on the cancellation of acoustic scattering from a sphere. Physical Review Letters. 110(12). https://doi.org/10.1103/PhysRevLett.110.124301 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1103/PhysRevLett.110.124301 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 110 | es_ES |
dc.description.issue | 12 | es_ES |
dc.relation.senia | 243086 | es_ES |
dc.identifier.eissn | 1079-7114 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Office of Naval Research | es_ES |
dc.description.references | Milton, G. W., Briane, M., & Willis, J. R. (2006). On cloaking for elasticity and physical equations with a transformation invariant form. New Journal of Physics, 8(10), 248-248. doi:10.1088/1367-2630/8/10/248 | es_ES |
dc.description.references | Cummer, S. A., & Schurig, D. (2007). One path to acoustic cloaking. New Journal of Physics, 9(3), 45-45. doi:10.1088/1367-2630/9/3/045 | es_ES |
dc.description.references | Norris, A. N. (2009). Acoustic metafluids. The Journal of the Acoustical Society of America, 125(2), 839-849. doi:10.1121/1.3050288 | es_ES |
dc.description.references | Chen, H., & Chan, C. T. (2007). Acoustic cloaking in three dimensions using acoustic metamaterials. Applied Physics Letters, 91(18), 183518. doi:10.1063/1.2803315 | es_ES |
dc.description.references | Cummer, S. A., Popa, B.-I., Schurig, D., Smith, D. R., Pendry, J., Rahm, M., & Starr, A. (2008). Scattering Theory Derivation of a 3D Acoustic Cloaking Shell. Physical Review Letters, 100(2). doi:10.1103/physrevlett.100.024301 | es_ES |
dc.description.references | Guild, M. D., Alù, A., & Haberman, M. R. (2011). Cancellation of acoustic scattering from an elastic sphere. The Journal of the Acoustical Society of America, 129(3), 1355-1365. doi:10.1121/1.3552876 | es_ES |
dc.description.references | Martin, T. P., & Orris, G. J. (2012). Hybrid inertial method for broadband scattering reduction. Applied Physics Letters, 100(3), 033506. doi:10.1063/1.3678633 | es_ES |
dc.description.references | Torrent, D., & Sánchez-Dehesa, J. (2008). Acoustic cloaking in two dimensions: a feasible approach. New Journal of Physics, 10(6), 063015. doi:10.1088/1367-2630/10/6/063015 | es_ES |
dc.description.references | Cheng, Y., Yang, F., Xu, J. Y., & Liu, X. J. (2008). A multilayer structured acoustic cloak with homogeneous isotropic materials. Applied Physics Letters, 92(15), 151913. doi:10.1063/1.2903500 | es_ES |
dc.description.references | Zhang, S., Xia, C., & Fang, N. (2011). Broadband Acoustic Cloak for Ultrasound Waves. Physical Review Letters, 106(2). doi:10.1103/physrevlett.106.024301 | es_ES |
dc.description.references | Popa, B.-I., Zigoneanu, L., & Cummer, S. A. (2011). Experimental Acoustic Ground Cloak in Air. Physical Review Letters, 106(25). doi:10.1103/physrevlett.106.253901 | es_ES |
dc.description.references | Farhat, M., Guenneau, S., & Enoch, S. (2009). Ultrabroadband Elastic Cloaking in Thin Plates. Physical Review Letters, 103(2). doi:10.1103/physrevlett.103.024301 | es_ES |
dc.description.references | Stenger, N., Wilhelm, M., & Wegener, M. (2012). Experiments on Elastic Cloaking in Thin Plates. Physical Review Letters, 108(1). doi:10.1103/physrevlett.108.014301 | es_ES |
dc.description.references | Sanchis, L., Håkansson, A., López-Zanón, D., Bravo-Abad, J., & Sánchez-Dehesa, J. (2004). Integrated optical devices design by genetic algorithm. Applied Physics Letters, 84(22), 4460-4462. doi:10.1063/1.1738931 | es_ES |
dc.description.references | Preble, S., Lipson, M., & Lipson, H. (2005). Two-dimensional photonic crystals designed by evolutionary algorithms. Applied Physics Letters, 86(6), 061111. doi:10.1063/1.1862783 | es_ES |
dc.description.references | Håkansson, A., Miyazaki, H. T., & Sánchez-Dehesa, J. (2006). Inverse Design for Full Control of Spontaneous Emission Using Light Emitting Scattering Optical Elements. Physical Review Letters, 96(15). doi:10.1103/physrevlett.96.153902 | es_ES |
dc.description.references | Sanchis, L., Cryan, M. J., Pozo, J., Craddock, I. J., & Rarity, J. G. (2007). Ultrahigh Purcell factor in photonic crystal slab microcavities. Physical Review B, 76(4). doi:10.1103/physrevb.76.045118 | es_ES |
dc.description.references | Andkjær, J., & Sigmund, O. (2011). Topology optimized low-contrast all-dielectric optical cloak. Applied Physics Letters, 98(2), 021112. doi:10.1063/1.3540687 | es_ES |
dc.description.references | Håkansson, A., Cervera, F., & Sánchez-Dehesa, J. (2005). Sound focusing by flat acoustic lenses without negative refraction. Applied Physics Letters, 86(5), 054102. doi:10.1063/1.1852719 | es_ES |
dc.description.references | García-Chocano, V. M., Sanchis, L., Díaz-Rubio, A., Martínez-Pastor, J., Cervera, F., Llopis-Pontiveros, R., & Sánchez-Dehesa, J. (2011). Acoustic cloak for airborne sound by inverse design. Applied Physics Letters, 99(7), 074102. doi:10.1063/1.3623761 | es_ES |
dc.description.references | Håkansson, A. (2007). Cloaking of objects from electromagnetic fields by inverse design of scattering optical elements. Optics Express, 15(7), 4328. doi:10.1364/oe.15.004328 | es_ES |
dc.description.references | Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Simulated Annealing. Science, 220(4598), 671-680. doi:10.1126/science.220.4598.671 | es_ES |
dc.description.references | Seybert, A. F., Soenarko, B., Rizzo, F. J., & Shippy, D. J. (1986). A special integral equation formulation for acoustic radiation and scattering for axisymmetric bodies and boundary conditions. The Journal of the Acoustical Society of America, 80(4), 1241-1247. doi:10.1121/1.393817 | es_ES |
dc.description.references | Karageorghis, A., & Fairweather, G. (1998). The method of fundamental solutions for axisymmetric acoustic scattering and radiation problems. The Journal of the Acoustical Society of America, 104(6), 3212-3218. doi:10.1121/1.423961 | es_ES |
dc.description.references | Milton, G. W., & Nicorovici, N.-A. P. (2006). On the cloaking effects associated with anomalous localized resonance. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 462(2074), 3027-3059. doi:10.1098/rspa.2006.1715 | es_ES |