- -

Negative refraction and energy funneling by hyperbolic materials : an experimental demonstration in acoustics

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Negative refraction and energy funneling by hyperbolic materials : an experimental demonstration in acoustics

Mostrar el registro completo del ítem

García Chocano, VM.; Christensen, J.; Sánchez-Dehesa Moreno-Cid, J. (2014). Negative refraction and energy funneling by hyperbolic materials : an experimental demonstration in acoustics. Physical Review Letters. 112(14). https://doi.org/10.1103/PhysRevLett.112.144301

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/58810

Ficheros en el ítem

Metadatos del ítem

Título: Negative refraction and energy funneling by hyperbolic materials : an experimental demonstration in acoustics
Autor: García Chocano, Víctor Manuel Christensen, Johan Sánchez-Dehesa Moreno-Cid, José
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Fecha difusión:
Resumen:
This Letter reports the design, fabrication, and experimental characterization of hyperbolic materials showing negative refraction and energy funneling of airborne sound. Negative refraction is demonstrated using a stack ...[+]
Palabras clave: Negative refraction , Hyperbolic materials , Energy funneling
Derechos de uso: Cerrado
Fuente:
Physical Review Letters. (issn: 0031-9007 ) (eissn: 1079-7114 )
DOI: 10.1103/PhysRevLett.112.144301
Editorial:
American Physical Society
Versión del editor: http://dx.doi.org/10.1103/PhysRevLett.112.144301
Código del Proyecto:
info:eu-repo/grantAgreement/ONR//N00014-09-1-0554/
info:eu-repo/grantAgreement/DFF//12-134776/DK/Sapere Aude: DFF-Starting Grant
info:eu-repo/grantAgreement/MICINN//TEC2010-19751/ES/NUEVOS DISPOSITIVOS BASADOS EN METAMATERIALES ELECTROMAGNETICOS Y ACUSTICOS/
Agradecimientos:
This work was partially supported by the Office of Naval Research (USA) under Grant No. N000140910554, and by the Ministerio de Economia y Competitividad (Spain) under Contract No. TEC2010-19751. J. C. gratefully acknowledges ...[+]
Tipo: Artículo

References

Poddubny, A., Iorsh, I., Belov, P., & Kivshar, Y. (2013). Hyperbolic metamaterials. Nature Photonics, 7(12), 948-957. doi:10.1038/nphoton.2013.243

Kildishev, A. V., Boltasseva, A., & Shalaev, V. M. (2013). Planar Photonics with Metasurfaces. Science, 339(6125), 1232009-1232009. doi:10.1126/science.1232009

Li, J., Fok, L., Yin, X., Bartal, G., & Zhang, X. (2009). Experimental demonstration of an acoustic magnifying hyperlens. Nature Materials, 8(12), 931-934. doi:10.1038/nmat2561 [+]
Poddubny, A., Iorsh, I., Belov, P., & Kivshar, Y. (2013). Hyperbolic metamaterials. Nature Photonics, 7(12), 948-957. doi:10.1038/nphoton.2013.243

Kildishev, A. V., Boltasseva, A., & Shalaev, V. M. (2013). Planar Photonics with Metasurfaces. Science, 339(6125), 1232009-1232009. doi:10.1126/science.1232009

Li, J., Fok, L., Yin, X., Bartal, G., & Zhang, X. (2009). Experimental demonstration of an acoustic magnifying hyperlens. Nature Materials, 8(12), 931-934. doi:10.1038/nmat2561

Torrent, D., & Sánchez-Dehesa, J. (2011). Multiple scattering formulation of two-dimensional acoustic and electromagnetic metamaterials. New Journal of Physics, 13(9), 093018. doi:10.1088/1367-2630/13/9/093018

Christensen, J., & de Abajo, F. J. G. (2012). Anisotropic Metamaterials for Full Control of Acoustic Waves. Physical Review Letters, 108(12). doi:10.1103/physrevlett.108.124301

Christensen, J., & García de Abajo, F. J. (2012). Negative refraction and backward waves in layered acoustic metamaterials. Physical Review B, 86(2). doi:10.1103/physrevb.86.024301

Liang, Z., & Li, J. (2012). Extreme Acoustic Metamaterial by Coiling Up Space. Physical Review Letters, 108(11). doi:10.1103/physrevlett.108.114301

Xie, Y., Popa, B.-I., Zigoneanu, L., & Cummer, S. A. (2013). Measurement of a Broadband Negative Index with Space-Coiling Acoustic Metamaterials. Physical Review Letters, 110(17). doi:10.1103/physrevlett.110.175501

Frenzel, T., David Brehm, J., Bückmann, T., Schittny, R., Kadic, M., & Wegener, M. (2013). Three-dimensional labyrinthine acoustic metamaterials. Applied Physics Letters, 103(6), 061907. doi:10.1063/1.4817934

Yang, S., Page, J. H., Liu, Z., Cowan, M. L., Chan, C. T., & Sheng, P. (2004). Focusing of Sound in a 3D Phononic Crystal. Physical Review Letters, 93(2). doi:10.1103/physrevlett.93.024301

Sukhovich, A., Jing, L., & Page, J. H. (2008). Negative refraction and focusing of ultrasound in two-dimensional phononic crystals. Physical Review B, 77(1). doi:10.1103/physrevb.77.014301

Hladky-Hennion, A.-C., Vasseur, J. O., Haw, G., Croënne, C., Haumesser, L., & Norris, A. N. (2013). Negative refraction of acoustic waves using a foam-like metallic structure. Applied Physics Letters, 102(14), 144103. doi:10.1063/1.4801642

Christensen, J., Fernandez-Dominguez, A. I., de Leon-Perez, F., Martin-Moreno, L., & Garcia-Vidal, F. J. (2007). Collimation of sound assisted by acoustic surface waves. Nature Physics, 3(12), 851-852. doi:10.1038/nphys774

Zhou, Y., Lu, M.-H., Feng, L., Ni, X., Chen, Y.-F., Zhu, Y.-Y., … Ming, N.-B. (2010). Acoustic Surface Evanescent Wave and its Dominant Contribution to Extraordinary Acoustic Transmission and Collimation of Sound. Physical Review Letters, 104(16). doi:10.1103/physrevlett.104.164301

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem