Mostrar el registro sencillo del ítem
dc.contributor.author | García Chocano, Víctor Manuel | es_ES |
dc.contributor.author | Christensen, Johan | es_ES |
dc.contributor.author | Sánchez-Dehesa Moreno-Cid, José | es_ES |
dc.date.accessioned | 2015-12-15T08:41:48Z | |
dc.date.available | 2015-12-15T08:41:48Z | |
dc.date.issued | 2014-04-10 | |
dc.identifier.issn | 0031-9007 | |
dc.identifier.uri | http://hdl.handle.net/10251/58810 | |
dc.description.abstract | This Letter reports the design, fabrication, and experimental characterization of hyperbolic materials showing negative refraction and energy funneling of airborne sound. Negative refraction is demonstrated using a stack of five holey Plexiglas plates where their thicknesses, layer separation, hole diameters, and lattice periodicity have been determined to show hyperbolic dispersion around 40 kHz. The resulting hyperbolic material shows a flat band profile in the equifrequency contour allowing the gathering of acoustic energy in a broad range of incident angles and its funneling through the material. Our demonstrations foresee interesting developments based on both phenomena. Acoustic imaging with subwavelength resolution and spot-size converters that harvest and squeeze sound waves irradiating from many directions into a collimated beam are just two possible applications among many. | es_ES |
dc.description.sponsorship | This work was partially supported by the Office of Naval Research (USA) under Grant No. N000140910554, and by the Ministerio de Economia y Competitividad (Spain) under Contract No. TEC2010-19751. J. C. gratefully acknowledges financial support from the Danish Council for Independent Research and a Sapere Aude Grant (12-134776). | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | American Physical Society | es_ES |
dc.relation.ispartof | Physical Review Letters | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Negative refraction | es_ES |
dc.subject | Hyperbolic materials | es_ES |
dc.subject | Energy funneling | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Negative refraction and energy funneling by hyperbolic materials : an experimental demonstration in acoustics | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1103/PhysRevLett.112.144301 | |
dc.relation.projectID | info:eu-repo/grantAgreement/ONR//N00014-09-1-0554/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/DFF//12-134776/DK/Sapere Aude: DFF-Starting Grant | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TEC2010-19751/ES/NUEVOS DISPOSITIVOS BASADOS EN METAMATERIALES ELECTROMAGNETICOS Y ACUSTICOS/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.description.bibliographicCitation | García Chocano, VM.; Christensen, J.; Sánchez-Dehesa Moreno-Cid, J. (2014). Negative refraction and energy funneling by hyperbolic materials : an experimental demonstration in acoustics. Physical Review Letters. 112(14). https://doi.org/10.1103/PhysRevLett.112.144301 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1103/PhysRevLett.112.144301 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 112 | es_ES |
dc.description.issue | 14 | es_ES |
dc.relation.senia | 267288 | es_ES |
dc.identifier.eissn | 1079-7114 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Office of Naval Research | es_ES |
dc.contributor.funder | Independent Research Fund Denmark | es_ES |
dc.description.references | Poddubny, A., Iorsh, I., Belov, P., & Kivshar, Y. (2013). Hyperbolic metamaterials. Nature Photonics, 7(12), 948-957. doi:10.1038/nphoton.2013.243 | es_ES |
dc.description.references | Kildishev, A. V., Boltasseva, A., & Shalaev, V. M. (2013). Planar Photonics with Metasurfaces. Science, 339(6125), 1232009-1232009. doi:10.1126/science.1232009 | es_ES |
dc.description.references | Li, J., Fok, L., Yin, X., Bartal, G., & Zhang, X. (2009). Experimental demonstration of an acoustic magnifying hyperlens. Nature Materials, 8(12), 931-934. doi:10.1038/nmat2561 | es_ES |
dc.description.references | Torrent, D., & Sánchez-Dehesa, J. (2011). Multiple scattering formulation of two-dimensional acoustic and electromagnetic metamaterials. New Journal of Physics, 13(9), 093018. doi:10.1088/1367-2630/13/9/093018 | es_ES |
dc.description.references | Christensen, J., & de Abajo, F. J. G. (2012). Anisotropic Metamaterials for Full Control of Acoustic Waves. Physical Review Letters, 108(12). doi:10.1103/physrevlett.108.124301 | es_ES |
dc.description.references | Christensen, J., & García de Abajo, F. J. (2012). Negative refraction and backward waves in layered acoustic metamaterials. Physical Review B, 86(2). doi:10.1103/physrevb.86.024301 | es_ES |
dc.description.references | Liang, Z., & Li, J. (2012). Extreme Acoustic Metamaterial by Coiling Up Space. Physical Review Letters, 108(11). doi:10.1103/physrevlett.108.114301 | es_ES |
dc.description.references | Xie, Y., Popa, B.-I., Zigoneanu, L., & Cummer, S. A. (2013). Measurement of a Broadband Negative Index with Space-Coiling Acoustic Metamaterials. Physical Review Letters, 110(17). doi:10.1103/physrevlett.110.175501 | es_ES |
dc.description.references | Frenzel, T., David Brehm, J., Bückmann, T., Schittny, R., Kadic, M., & Wegener, M. (2013). Three-dimensional labyrinthine acoustic metamaterials. Applied Physics Letters, 103(6), 061907. doi:10.1063/1.4817934 | es_ES |
dc.description.references | Yang, S., Page, J. H., Liu, Z., Cowan, M. L., Chan, C. T., & Sheng, P. (2004). Focusing of Sound in a 3D Phononic Crystal. Physical Review Letters, 93(2). doi:10.1103/physrevlett.93.024301 | es_ES |
dc.description.references | Sukhovich, A., Jing, L., & Page, J. H. (2008). Negative refraction and focusing of ultrasound in two-dimensional phononic crystals. Physical Review B, 77(1). doi:10.1103/physrevb.77.014301 | es_ES |
dc.description.references | Hladky-Hennion, A.-C., Vasseur, J. O., Haw, G., Croënne, C., Haumesser, L., & Norris, A. N. (2013). Negative refraction of acoustic waves using a foam-like metallic structure. Applied Physics Letters, 102(14), 144103. doi:10.1063/1.4801642 | es_ES |
dc.description.references | Christensen, J., Fernandez-Dominguez, A. I., de Leon-Perez, F., Martin-Moreno, L., & Garcia-Vidal, F. J. (2007). Collimation of sound assisted by acoustic surface waves. Nature Physics, 3(12), 851-852. doi:10.1038/nphys774 | es_ES |
dc.description.references | Zhou, Y., Lu, M.-H., Feng, L., Ni, X., Chen, Y.-F., Zhu, Y.-Y., … Ming, N.-B. (2010). Acoustic Surface Evanescent Wave and its Dominant Contribution to Extraordinary Acoustic Transmission and Collimation of Sound. Physical Review Letters, 104(16). doi:10.1103/physrevlett.104.164301 | es_ES |