- -

Negative refraction and energy funneling by hyperbolic materials : an experimental demonstration in acoustics

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Negative refraction and energy funneling by hyperbolic materials : an experimental demonstration in acoustics

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author García Chocano, Víctor Manuel es_ES
dc.contributor.author Christensen, Johan es_ES
dc.contributor.author Sánchez-Dehesa Moreno-Cid, José es_ES
dc.date.accessioned 2015-12-15T08:41:48Z
dc.date.available 2015-12-15T08:41:48Z
dc.date.issued 2014-04-10
dc.identifier.issn 0031-9007
dc.identifier.uri http://hdl.handle.net/10251/58810
dc.description.abstract This Letter reports the design, fabrication, and experimental characterization of hyperbolic materials showing negative refraction and energy funneling of airborne sound. Negative refraction is demonstrated using a stack of five holey Plexiglas plates where their thicknesses, layer separation, hole diameters, and lattice periodicity have been determined to show hyperbolic dispersion around 40 kHz. The resulting hyperbolic material shows a flat band profile in the equifrequency contour allowing the gathering of acoustic energy in a broad range of incident angles and its funneling through the material. Our demonstrations foresee interesting developments based on both phenomena. Acoustic imaging with subwavelength resolution and spot-size converters that harvest and squeeze sound waves irradiating from many directions into a collimated beam are just two possible applications among many. es_ES
dc.description.sponsorship This work was partially supported by the Office of Naval Research (USA) under Grant No. N000140910554, and by the Ministerio de Economia y Competitividad (Spain) under Contract No. TEC2010-19751. J. C. gratefully acknowledges financial support from the Danish Council for Independent Research and a Sapere Aude Grant (12-134776). en_EN
dc.language Inglés es_ES
dc.publisher American Physical Society es_ES
dc.relation.ispartof Physical Review Letters es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Negative refraction es_ES
dc.subject Hyperbolic materials es_ES
dc.subject Energy funneling es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Negative refraction and energy funneling by hyperbolic materials : an experimental demonstration in acoustics es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1103/PhysRevLett.112.144301
dc.relation.projectID info:eu-repo/grantAgreement/ONR//N00014-09-1-0554/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/DFF//12-134776/DK/Sapere Aude: DFF-Starting Grant es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TEC2010-19751/ES/NUEVOS DISPOSITIVOS BASADOS EN METAMATERIALES ELECTROMAGNETICOS Y ACUSTICOS/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation García Chocano, VM.; Christensen, J.; Sánchez-Dehesa Moreno-Cid, J. (2014). Negative refraction and energy funneling by hyperbolic materials : an experimental demonstration in acoustics. Physical Review Letters. 112(14). https://doi.org/10.1103/PhysRevLett.112.144301 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1103/PhysRevLett.112.144301 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 112 es_ES
dc.description.issue 14 es_ES
dc.relation.senia 267288 es_ES
dc.identifier.eissn 1079-7114
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Office of Naval Research es_ES
dc.contributor.funder Independent Research Fund Denmark es_ES
dc.description.references Poddubny, A., Iorsh, I., Belov, P., & Kivshar, Y. (2013). Hyperbolic metamaterials. Nature Photonics, 7(12), 948-957. doi:10.1038/nphoton.2013.243 es_ES
dc.description.references Kildishev, A. V., Boltasseva, A., & Shalaev, V. M. (2013). Planar Photonics with Metasurfaces. Science, 339(6125), 1232009-1232009. doi:10.1126/science.1232009 es_ES
dc.description.references Li, J., Fok, L., Yin, X., Bartal, G., & Zhang, X. (2009). Experimental demonstration of an acoustic magnifying hyperlens. Nature Materials, 8(12), 931-934. doi:10.1038/nmat2561 es_ES
dc.description.references Torrent, D., & Sánchez-Dehesa, J. (2011). Multiple scattering formulation of two-dimensional acoustic and electromagnetic metamaterials. New Journal of Physics, 13(9), 093018. doi:10.1088/1367-2630/13/9/093018 es_ES
dc.description.references Christensen, J., & de Abajo, F. J. G. (2012). Anisotropic Metamaterials for Full Control of Acoustic Waves. Physical Review Letters, 108(12). doi:10.1103/physrevlett.108.124301 es_ES
dc.description.references Christensen, J., & García de Abajo, F. J. (2012). Negative refraction and backward waves in layered acoustic metamaterials. Physical Review B, 86(2). doi:10.1103/physrevb.86.024301 es_ES
dc.description.references Liang, Z., & Li, J. (2012). Extreme Acoustic Metamaterial by Coiling Up Space. Physical Review Letters, 108(11). doi:10.1103/physrevlett.108.114301 es_ES
dc.description.references Xie, Y., Popa, B.-I., Zigoneanu, L., & Cummer, S. A. (2013). Measurement of a Broadband Negative Index with Space-Coiling Acoustic Metamaterials. Physical Review Letters, 110(17). doi:10.1103/physrevlett.110.175501 es_ES
dc.description.references Frenzel, T., David Brehm, J., Bückmann, T., Schittny, R., Kadic, M., & Wegener, M. (2013). Three-dimensional labyrinthine acoustic metamaterials. Applied Physics Letters, 103(6), 061907. doi:10.1063/1.4817934 es_ES
dc.description.references Yang, S., Page, J. H., Liu, Z., Cowan, M. L., Chan, C. T., & Sheng, P. (2004). Focusing of Sound in a 3D Phononic Crystal. Physical Review Letters, 93(2). doi:10.1103/physrevlett.93.024301 es_ES
dc.description.references Sukhovich, A., Jing, L., & Page, J. H. (2008). Negative refraction and focusing of ultrasound in two-dimensional phononic crystals. Physical Review B, 77(1). doi:10.1103/physrevb.77.014301 es_ES
dc.description.references Hladky-Hennion, A.-C., Vasseur, J. O., Haw, G., Croënne, C., Haumesser, L., & Norris, A. N. (2013). Negative refraction of acoustic waves using a foam-like metallic structure. Applied Physics Letters, 102(14), 144103. doi:10.1063/1.4801642 es_ES
dc.description.references Christensen, J., Fernandez-Dominguez, A. I., de Leon-Perez, F., Martin-Moreno, L., & Garcia-Vidal, F. J. (2007). Collimation of sound assisted by acoustic surface waves. Nature Physics, 3(12), 851-852. doi:10.1038/nphys774 es_ES
dc.description.references Zhou, Y., Lu, M.-H., Feng, L., Ni, X., Chen, Y.-F., Zhu, Y.-Y., … Ming, N.-B. (2010). Acoustic Surface Evanescent Wave and its Dominant Contribution to Extraordinary Acoustic Transmission and Collimation of Sound. Physical Review Letters, 104(16). doi:10.1103/physrevlett.104.164301 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem