Pardo Pascual, JE.; Almonacid Caballer, J.; Ruiz Fernández, LÁ.; Palomar-Vázquez, J. (2012). Automatic extraction of shorelines from Landsat TM and ETM+ multi-temporal images with subpixel precision. Remote Sensing of Environment. 123:1-11. doi:10.1016/j.rse.2012.02.024
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/58901
Título:
|
Automatic extraction of shorelines from Landsat TM and ETM+ multi-temporal images with subpixel precision
|
Autor:
|
Pardo Pascual, Josep Eliseu
Almonacid Caballer, Jaime
Ruiz Fernández, Luis Ángel
Palomar-Vázquez, Jesús
|
Entidad UPV:
|
Universitat Politècnica de València. Departamento de Ingeniería Cartográfica Geodesia y Fotogrametría - Departament d'Enginyeria Cartogràfica, Geodèsia i Fotogrametria
|
Fecha difusión:
|
|
Resumen:
|
A high precision geometric method for automated shoreline detection from Landsat TM and ETM+ imagery is presented. The methodology is based on the application of an algorithm that ensures accurate image geometric registration ...[+]
A high precision geometric method for automated shoreline detection from Landsat TM and ETM+ imagery is presented. The methodology is based on the application of an algorithm that ensures accurate image geometric registration and the use of a new algorithm for sub-pixel shoreline extraction, both at the sub-pixel level. The analysis of the initial errors shows the influence that differences in reflectance of land cover types have over shoreline detection, allowing us to create a model to substantially reduce these errors. Three correction models were defined according to the type of gain used in the acquisition of the original Landsat images. Error assessment tests were applied on three artificially stabilised coastal segments that have a constant and well-defined land-water boundary. A testing set of 45 images (28 TM, 10 ETM high-gain and 7 ETM low-gain) was used. The mean error obtained in shoreline location ranges from 1.22 to 1.63. m, and the RMSE from 4.69 to 5.47. m. Since the errors follow a normal distribution, then the maximum error at a given probability can be estimated. The results confirm that the use of Landsat imagery for detection of instantaneous coastlines yields accuracy comparable to high-resolution techniques, showing the potential of Landsat TM and ETM images in those applications where the instantaneous lines are a good geomorphological descriptor. © 2012 Elsevier Inc.
[-]
|
Palabras clave:
|
Beach management
,
Coastal processes
,
Landsat images
,
Shoreline subpixel detection
,
Automatic extraction
,
Coastal process
,
Correction models
,
Descriptors
,
Error assessment
,
Geometric method
,
High precision
,
High-gain
,
High-resolution techniques
,
Land-cover types
,
Landsat imagery
,
LANDSAT TM
,
Maximum error
,
Mean errors
,
Multi-temporal image
,
Sub pixels
,
Subpixel detection
,
Subpixel precision
,
Algorithms
,
Normal distribution
,
Errors
,
Accuracy assessment
,
Beach nourishment
,
Error correction
,
Geomorphological response
,
Image resolution
,
Land cover
,
Landsat thematic mapper
,
Pixel
,
Precision
,
Probability
,
Reflectance
,
Satellite imagery
,
Shoreline
|
Derechos de uso:
|
Reserva de todos los derechos
|
Fuente:
|
Remote Sensing of Environment. (issn:
0034-4257
)
|
DOI:
|
10.1016/j.rse.2012.02.024
|
Editorial:
|
Elsevier
|
Versión del editor:
|
http://dx.doi.org/10.1016/j.rse.2012.02.024
|
Código del Proyecto:
|
info:eu-repo/grantAgreement/MICINN//CGL2010-19591/ES/DESARROLLO DE METODOLOGIAS INTEGRADAS PARA LA ACTUALIZACION DE BASES DE DATOS DE OCUPACION DEL SUELO/
info:eu-repo/grantAgreement/MICINN//CGL2009-14220-C02-01/ES/CGL2009-14220-C02-01/
|
Agradecimientos:
|
The authors appreciate the financial support provided by the Spanish Ministerio de Ciencia e Innovacion and the Spanish Plan E in the framework of the Projects CGL2009-14220-C02-01 and CGL2010-19591.
|
Tipo:
|
Artículo
|