- -

Quantum model of light transmission in array waveguide gratings

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Quantum model of light transmission in array waveguide gratings

Show full item record

Capmany Francoy, J.; Mora Almerich, J.; Fernández-Pousa, CR.; Muñoz Muñoz, P. (2013). Quantum model of light transmission in array waveguide gratings. Optics Express. 21(12):14841-14852. doi:10.1364/OE.21.014841

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/58923

Files in this item

Item Metadata

Title: Quantum model of light transmission in array waveguide gratings
Author: Capmany Francoy, José Mora Almerich, José Fernández-Pousa, Carlos R. Muñoz Muñoz, Pascual
UPV Unit: Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Issued date:
Abstract:
We develop, to the best of our knowledge, the first model for an array waveguide grating (AWG) device subject to quantum inputs and analyze its basic transformation functionalities for single-photon states. A commercial, ...[+]
Subjects: Integrated optics devices , Wavelength filtering devices , Quantum information and processing
Copyrigths: Cerrado
Source:
Optics Express. (eissn: 1094-4087 )
DOI: 10.1364/OE.21.014841
Publisher:
Optical Society of America: Open Access Journals
Publisher version: http://dx.doi.org/10.1364/OE.21.014841
Project ID:
Research Excellency Award Program GVA PROMETEO 2013/012
...[+]
Research Excellency Award Program GVA PROMETEO 2013/012
Universitat Politècnica de València SP20120588
Spanish Ministerio de Economía y Competitividad TEC2011-29120-C05-02
Spanish Ministerio de Economía y Competitividad TEC2011-29120-C05-05
Spanish Ministerio de Economía y Competitividad TEC2010-21337 ATOMIC
FEDER UPVOV08-3E-008
FEDER UPVOV10-3E-492
[-]
Thanks:
The authors wish to acknowledge the financial support given by the Research Excellency Award Program GVA PROMETEO 2013/012; Proof of Concept from the Universitat Politecnica de Valencia SP20120588; Spanish Ministerio de ...[+]
Type: Artículo

References

Smit, M., van der Tol, J., & Hill, M. (2011). Moore’s law in photonics. Laser & Photonics Reviews, 6(1), 1-13. doi:10.1002/lpor.201100001

O’Brien, J. L., Furusawa, A., & Vučković, J. (2009). Photonic quantum technologies. Nature Photonics, 3(12), 687-695. doi:10.1038/nphoton.2009.229

Politi, A., Matthews, J., Thompson, M. G., & O’Brien, J. L. (2009). Integrated Quantum Photonics. IEEE Journal of Selected Topics in Quantum Electronics, 15(6), 1673-1684. doi:10.1109/jstqe.2009.2026060 [+]
Smit, M., van der Tol, J., & Hill, M. (2011). Moore’s law in photonics. Laser & Photonics Reviews, 6(1), 1-13. doi:10.1002/lpor.201100001

O’Brien, J. L., Furusawa, A., & Vučković, J. (2009). Photonic quantum technologies. Nature Photonics, 3(12), 687-695. doi:10.1038/nphoton.2009.229

Politi, A., Matthews, J., Thompson, M. G., & O’Brien, J. L. (2009). Integrated Quantum Photonics. IEEE Journal of Selected Topics in Quantum Electronics, 15(6), 1673-1684. doi:10.1109/jstqe.2009.2026060

Thompson, M. G., Politi, A., Matthews, J. C. F., & O’Brien, J. L. (2011). Integrated waveguide circuits for optical quantum computing. IET Circuits, Devices & Systems, 5(2), 94. doi:10.1049/iet-cds.2010.0108

Matthews, J. C. F., & Thompson, M. G. (2012). An entangled walk of photons. Nature, 484(7392), 47-48. doi:10.1038/nature11035

Schwagmann, A., Kalliakos, S., Farrer, I., Griffiths, J. P., Jones, G. A. C., Ritchie, D. A., & Shields, A. J. (2011). On-chip single photon emission from an integrated semiconductor quantum dot into a photonic crystal waveguide. Applied Physics Letters, 99(26), 261108. doi:10.1063/1.3672214

Davanço, M., Ong, J. R., Shehata, A. B., Tosi, A., Agha, I., Assefa, S., … Srinivasan, K. (2012). Telecommunications-band heralded single photons from a silicon nanophotonic chip. Applied Physics Letters, 100(26), 261104. doi:10.1063/1.4711253

Ong, J. R., & Mookherjea, S. (2013). Quantum light generation on a silicon chip using waveguides and resonators. Optics Express, 21(4), 5171. doi:10.1364/oe.21.005171

Capmany, J., & Fernández-Pousa, C. R. (2010). Quantum model for electro-optical phase modulation. Journal of the Optical Society of America B, 27(6), A119. doi:10.1364/josab.27.00a119

Capmany, J., & Fernández-Pousa, C. R. (2010). Quantum model for electro-optical amplitude modulation. Optics Express, 18(24), 25127. doi:10.1364/oe.18.025127

Leonhardt, U. (2003). Quantum physics of simple optical instruments. Reports on Progress in Physics, 66(7), 1207-1249. doi:10.1088/0034-4885/66/7/203

Smit, M. K., & Van Dam, C. (1996). PHASAR-based WDM-devices: Principles, design and applications. IEEE Journal of Selected Topics in Quantum Electronics, 2(2), 236-250. doi:10.1109/2944.577370

Munoz, P., Pastor, D., & Capmany, J. (2002). Modeling and design of arrayed waveguide gratings. Journal of Lightwave Technology, 20(4), 661-674. doi:10.1109/50.996587

Rahimi-Keshari, S., Broome, M. A., Fickler, R., Fedrizzi, A., Ralph, T. C., & White, A. G. (2013). Direct characterization of linear-optical networks. Optics Express, 21(11), 13450. doi:10.1364/oe.21.013450

[-]

This item appears in the following Collection(s)

Show full item record